检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟佳平 李云松[1] 谢卫莹 雷杰[1] Paolo Gamba ZHONG Jia-ping;LI Yun-song;XIE Wei-ying;LEI Jie;Paoo Gamba(State Key Laboratory of Integrated Services Networks,Xidian University,Xi’an,Shaanxi 710071,China;University of Pavia,Pavia,Lombardia 27100,Italy)
机构地区:[1]西安电子科技大学综合业务网全国重点实验室,陕西西安710071 [2]帕维亚大学,意大利帕维亚27100
出 处:《电子学报》2024年第5期1716-1729,共14页Acta Electronica Sinica
基 金:国家自然科学基金(No.62121001,No.U22B2014);中国科协青年人才托举工程(No.2020QNRC001)。
摘 要:高光谱图像(HyperSpectral Images,HSIs)具有高光谱分辨率和丰富的光谱信息,其具有的大量窄波段电磁波有利于获取感兴趣目标的理化信息,并根据对应的光谱特征对不同物质进行有效区分,从而完成目标检测任务.然而有限样本、少量先验信息、高维相似背景及不同类别差异小所导致的目标和背景混淆问题使得高光谱目标检测(Hyperspectral Target Detection,HTD)面临挑战.为此,本文提出结合区域引导和双注意力机制的高光谱目标检测判别式学习网络(Region-guided and dual-Attention Discriminative learning Network,RADN),以缓解标记样本少的条件下不同类别相似度高和相同类别差异性大导致的背景和目标不易区分的问题,减少高维冗余特征带来的计算复杂度,同时提升检测精度.本文使用经验性区域引导网络训练,采用光谱约束的无监督聚类方法确定网络输入,选择性地关注高光谱图像中的显著性特征和感兴趣区域.此外,本文在网络中添加双通道注意力机制来辅助复杂背景分布的估计,并在网络中引入不同类别光谱先验损失函数,进一步减少高维复杂背景以及光谱变化对于目标的干扰.实验结果和分析表明,RADN在不同数据集上的性能优于现有先进的算法.Hyperspectral images(HSIs)have high spectral resolution and rich spectral information,which can obtain the physical and chemical information of the target of interest by using a large number of narrow-band waves.HSIs can effectively distinguish different substances by corresponding spectral features,and complete the task of target detection.However,the problem of target and background confusion caused by limited samples,a small amount of prior information,high dimensional similar background,and differences between different classes make hyperspectral target detection(HTD)still face challenges.To this end,we propose a region-guided and dual-attention discriminative learning network(RADN)for HTD to solve the problem of intra-class differences and inter-class similarities under a few samples.It can reduce the computational complexity caused by high-dimensional redundant features and improve detection accuracy.In this paper,we introduce the empirical region-guided network for training.We employ the spectrally constrained unsupervised clustering network to determine the network input.To selectively focus on salient features and regions of interest,we add a dual-channel attention mechanism in the generator and discriminator to assist in the estimation of complex background distributions;We introduce an inter-class spectral prior loss function in the network and further reduce the interference of high-dimensional complex background and spectral changes to the target.Experimental results and analysis show that RADN outperforms existing state-of-the-art algorithms on different datasets.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49