基于MCMCC改进ORB-SLAM3的移动机器人导航  

Improved ORB-SLAM3 Based on MCMCC for Mobile Robot Navigation

在线阅读下载全文

作  者:赵亮 王婷 秦佳宁 续欣莹 程兰 ZHAO Liang;WANG Ting;QIN Jianing;XU Xinying;CHENG Lan(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)

机构地区:[1]太原理工大学电气与动力工程学院,太原030024

出  处:《太原理工大学学报》2024年第4期640-649,共10页Journal of Taiyuan University of Technology

基  金:国家自然科学基金资助项目(62073232,61973226);山西省科技合作交流基金项目(202104041101030)。

摘  要:【目的】针对VSLAM建立的稀疏特征地图不能直接用于导航,且现有的将基于稀疏特征图转化为栅格地图进行导航的方法存在建图精度不高的问题,无法实现准确导航。提出了一种基于MCMCC改进ORB-SLAM3的移动机器人导航实现方法,在仅有深度相机的嵌入式设备上可以实现室内实时地图构建、定位与导航。【方法】提出的方法利用基于多凸组合最大互相关熵(MCMCC)标准的后端优化算法来改进ORB-SLAM3的后端优化模块,降低非高斯噪声对建图精度的影响。同时在将稀疏特征图转化为栅格地图的过程中,利用回环信息更新栅格地图,以提高栅格地图的精度。【结果】仿真和真实场景实验验证了所提出方法的有效性。【Purposes】 The sparse feature map established by using VSLAM cannot be directly used for navigation, and the existing methods of converting sparse feature maps into grid maps for navigation suffer from low accuracy of map construction, resulting in the failure to achieve accurate navigation. An improved ORB-SLAM3 navigation method is proposed based on multi-convex combined maximum correntropy criterion(MCMCC), which can realize the construction, positioning, and navigation of indoor real-time mapping on the embedded device with only a RGB-D camera. 【Methods】 The proposed method uses the back-end optimization algorithm based on MCMCC to combat the influence of non-Gaussian noises and to further improve the mapping accuracy of ORB-SLAM. Subsequently, in the process of converting the sparse feature map into a grid map, the grid map is updated with the loop detection information to improve the grid map accuracy for accurate navigation. 【Findings】 Furthermore, simulation and real scene experiments have been carried out to verify the effectiveness of the proposed method.

关 键 词:VSLAM 后端优化 MCMCC 栅格地图 回环更新 导航 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象