检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴逸华 何峥 赵生妹[1] Wu Yihua;He Zheng;Zhao Shengmei(Institute of Signal Processing and Transmission,College of Telecommunications&Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,Jiangsu,China)
机构地区:[1]南京邮电大学通信与信息工程学院信号处理与传输研究院,江苏南京210003
出 处:《激光与光电子学进展》2024年第10期153-157,共5页Laser & Optoelectronics Progress
摘 要:针对未知物体的分类问题,提出了一种基于支持向量机和关联成像的分类方法。该方法利用线性判别分析法提取出物体的特征向量,并根据该特征向量设计出应用于关联成像系统的特征散斑,将特征散斑照射物体获得桶探测器值,支持向量机可以依据桶探测器值进行判别从而获得物体的类别。该方法的可行性在MNIST数据集上得到了验证,结果表明,该方法在10个分类任务中均可取得较高的分类准确率,平均分类准确率达90.5%。与其他分类方法的对比结果表明,所提方法在准确率上更具优势。A classification method based on support vector machine and correlation imaging is proposed to address the problem of unknown object recognition.The method utilizes linear discriminant analysis to extract feature vectors from the objects.Based on these feature vectors,the characteristic speckle patterns are designed and applied to a correlation imaging system.By illuminating the objects with the characteristic speckle patterns,the bucket detector values are obtained from the correlation imaging system.The support vector machine is then employed to discriminate and classify the objects based on these bucket detector values.The feasibility of this approach is validated on the MNIST dataset.The results demonstrate that high classification accuracies can be achieved by the proposed method in all ten classification tasks,with an average classification accuracy of 90.5%.The comparison results with other classification methods indicate that the proposed method has more advantages in accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171