检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李燕[1] LI Yan(Unit 91550 of PLA,Dalian 116023,China)
机构地区:[1]中国人民解放军91550部队,辽宁大连116023
出 处:《光学与光电技术》2024年第3期23-29,共7页Optics & Optoelectronic Technology
摘 要:点云配准是计算机视觉中一个基本而又重要的研究课题。针对现有配准算法对初值敏感、特征描述符普适性差的问题,提出了一种Harris3D与改进RANSAC结合粗配准和基于新型加权因子与新型特征描述符ICP精配准的两步配准法。改进RANSAC方法不断迭代,为精配准提供良好的位姿初值。点云的法线计算可充分描述点云特征的描述符与加权因子。在精配准中根据特征距离查询最近点,不断计算点云间特征距离,根据3σ准则剔除误匹配点对,从而实现加快收敛和提高精度的效果。结果表明,该算法相比传统ICP算法,收敛时间仅为其20%,使最终的配准误差降低至0.008 mm以下,可对一般点云进行快速坐标系对齐。Point cloud registration is a basic and important research topic in computer vision.Aiming at the problems of existing registration algorithms that sensitive initial values and poor universality on feature descriptors,this paper proposes a two-step registration method including manual rough registration and ICP fine registration based on new weighted factor and new feature descriptors.The normal calculation of the point cloud can adequately describe the characteristics and weighting factors of point cloud descriptors.In the precision registration,the nearest point is queried according to the feature distance,the feature distance between point clouds is constantly calculated,and the mismatched point pairs are removed according to the 3o criterion,thus achieving the effect of accelerating convergence and improving accuracy.The results show that compared with the traditional ICP algorithm,the convergence time of the proposed algorithm is only 20%,and the final registration error is reduced to 0.008 mm.
关 键 词:点云配准 迭代最近点 Harris3D算法 特征描述符 精配准
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49