检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张凯涵 冯晨娇[2] 姚凯旋 宋鹏[4] 梁吉业[3] ZHANG Kaihan;FENG Chenjiao;YAO Kaixuan;SONG Peng;LIANG Jiye(School of Computer Science and Technology,North University of China,Taiyuan 030051;School of Applied Mathematics,Shanxi University of Finance and Economics,Taiyuan 030006;Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education,Shanxi University,Taiyuan 030006;School of Economics and Management,Shanxi University,Taiyuan 030031)
机构地区:[1]中北大学计算机科学与技术学院,太原030051 [2]山西财经大学应用数学学院,太原030006 [3]山西大学计算智能与中文信息处理教育部重点实验室,太原030006 [4]山西大学经济与管理学院,太原030031
出 处:《模式识别与人工智能》2024年第6期479-490,共12页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.72171137);山西省基础研究计划项目(No.202203021222075,202203021211331)资助。
摘 要:产品的多模态数据通常被作为额外的辅助信息引入推荐算法中,丰富用户与产品的表示特征,有效融合用户与产品的交互信息和多模态信息是关键研究内容之一.现有方法在特征融合与语义关联建模上仍存在不足,对此,文中从特征融合视角出发,构建基于对比学习和语义增强的多模态推荐算法.首先,采用图神经网络与注意力机制充分融合协同特征与多模态特征.然后,以协同信息中的交互结构为指导,学习各模态内的语义关联结构.同时,采用对比学习范式捕捉跨模态的表征依赖关系,在对比损失中引入可靠性因子,自适应调整对多模态特征的约束强度,抑制数据噪声的影响.最后,联合优化上述任务,生成推荐结果.在4个真实数据集上的实验表明文中算法的优越性.The multimodal data of items is typically introduced into recommendation algorithms as additional auxiliary information to enrich the representation features of users and items.How to effectively integrate the interaction information with multimodal information of users and items is a key issue to the research.Existing methods are still insufficient in feature fusion and semantic association modeling.Therefore,a multimodal recommendation algorithm based on contrastive learning and semantic enhancement is proposed from the perspective of feature fusion.Firstly,the graph neural network and attention mechanism are adopted to fully integrate collaborative features and multimodal features.Next,the semantic association structures within each modality are learned under the guidance of the interaction structure in collaborative information.Meanwhile,the contrastive learning paradigm is employed to capture cross-modal representation dependencies.A reliability factor is introduced into the contrastive loss to adaptively adjust the constraint strength of the multimodal features,consequently suppressing the influence of data noise.Finally,the aforementioned tasks are jointly optimized to generate recommendation results.Experimental results on four real datasets show that the proposed algorithm yields excellent performance.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74