一种多任务学习结合U-Net的微动脉瘤图像分割方法  

A multi-task learning combined with U-Net’s microaneurysm image segmentation method

在线阅读下载全文

作  者:崔永俊 雷凯杰 马巧梅[2] CUI Yongjun;LEI Kaijie;MA Qiaomei(School of Instruments and Electronics,North University of China,Taiyuan 030051,China;School of Software,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学仪器与电子学院,山西太原030051 [2]中北大学软件学院,山西太原030051

出  处:《电子设计工程》2024年第15期190-195,共6页Electronic Design Engineering

摘  要:微动脉瘤是检测糖尿病初期视网膜病变的关键病灶,针对微动脉瘤图像分割问题,提出了多种图像预处理技术与多任务学习网络相结合的方法。该方法使用了多种图像预处理技术,在UNet中引入了注意力机制,并将微动脉瘤图像分割作为主任务,微动脉瘤存在性检测作为副任务,利用多任务学习结合U-Net来提升主任务分割效果。在国际公开数据集上进行实验,获得了AUC为9.48%以及AP为51.40%的结果,与单任务图像分割相比,AP值提升了3.82%,由实验结果可知该方法能够提升微动脉瘤的分割效果。Microaneurysm is the key lesions in the detection of early Diabetic Retinopathy,aiming at the problem of microaneurysm detection in fundus images,a method combining multi-task learning network and various image preprocessing is proposed.This method uses a variety of image preprocessing techniques,introduces an attention mechanism into U-Net,and uses microaneurysm image segmentation as the main task,and microaneurysm presence detection as the secondary task,it uses multi-task learning combined with U-Net to improve the main task segmentation effect.Experiments were conducted on an internationally available dataset,also achived results with AUC of 99.48%and AP of 51.40%,compared with single-task image segmentation,the AP value increased by 3.82%,the experimental results show that this method can improve the segmentation effect of microaneurysms.

关 键 词:深度学习 糖尿病视网膜病变 微动脉瘤 图像分割 多任务学习 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象