检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田润泽 周宇龙 朱洪 薛岗[1] TIAN Runze;ZHOU Yulong;ZHU Hong;XUE Gang(School of Software,Yunnan University,Kunming Yunnan 650000,China)
机构地区:[1]云南大学软件学院,昆明650000
出 处:《计算机应用》2024年第7期2168-2174,共7页journal of Computer Applications
基 金:云南省科技厅重大科技专项(202202AD080002)。
摘 要:随着移动边缘计算技术的高速发展,提供高质量的移动服务需要根据用户实时的移动轨迹变化多元地考虑网络通信中的影响因素来动态地规划服务迁移路径。针对现有服务迁移路径规划研究中对城市场景下用户移动轨迹预测缺失、规划迁移路径与用户移动路径相似度较低等问题,提出一种根据用户实时移动轨迹的服务移动路径选择算法。首先通过基于长短期记忆(LSTM)模型的轨迹预测算法和基于隐马尔可夫模型(HMM)的路网匹配算法预测用户未来移动轨迹,然后根据预测移动轨迹与邻近局部基站状态信息选择最佳迁移边缘服务器,进而完成城市场景下基于网格地图的服务迁移路径选择。在深圳市出租车轨迹数据集与手机基站状态数据集所构造的数据集上,相较于改进深度优先搜索(DFS)算法、改进A*算法、基于矩阵的动态多路径选择(MDMPS)算法和基于矩形区域划分的服务迁移路径选择(GDSMPS)算法,所提算法的平均服务迁移时间分别减少了34.8%、44.5%、24.9%和12.7%,平衡路径相似度分别提升了26.2%、49.7%、14.3%和4.7%;在噪声数据集和长路径数据集上,所提算法的平均服务迁移时间波动幅度最小且平均轨迹相似度最高。实验结果表明,所提算法不仅可以有效减少服务迁移时间,提升迁移路径与用户移动路径的相似度,而且具有良好的抗数据噪声能力与优秀的长路径规划能力。With rapid development of mobile edge computing,providing high-quality mobile services requires considering various factors that affect network communication diversifiedly according to the real-time changes of user mobility trajectories,and service migration paths should be dynamically planned.Addressing existing gaps in service migration path planning studies,particularly the lack of predictive models for user mobility trajectories in urban scenarios and low similarity between planned and actual user paths,an algorithm was proposed for service migration path selection based on real-time user movement trajectories.The user’s future movement trajectory was predicted through a trajectory prediction algorithm based on Long Short-Term Memory(LSTM)model and a road network matching algorithm based on Hidden Markov Model(HMM).Then,according to predicted movement trajectory and status information of nearby local base stations,the optimal migration edge server was selected,thereby completing service migration path selection in urban scenarios.On the dataset constructed from taxi trajectory dataset and mobile base station status dataset in Shenzhen,compared to the improved Depth-First Search(DFS)algorithm,improved A*algorithm,Matrix-based Dynamic Multi-Path Selection(MDMPS)algorithm and Grid Division-based Service Migration Path Selection(GDSMPS)algorithm,the proposed algorithm reduced the average service migration time by 34.8%,44.5%,24.9%and 12.7%respectively,and increased average path similarity by 26.2%,49.7%,14.3%and 4.7%respectively.On noise datasets and long path datasets,the proposed algorithm had the smallest fluctuation in average service migration time and the highest average trajectory similarity.Experimental results show that the proposed algorithm not only effectively reduces service migration time,enhances the similarity between migration path and user movement path,but also has good resistance to data noise and excellent long-distance path planning capability.
关 键 词:服务迁移路径 长短期记忆神经网络 轨迹预测 路网匹配 动态路径规划
分 类 号:TP311.1[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49