检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翁顺[1] 雷奥琦 陈志丹 于虹 颜永逸 余兴胜[2] WENG Shun;LEI Aoqi;CHEN Zhidan;YU Hong;YAN Yongyi;YU Xingsheng(School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 430063,China)
机构地区:[1]华中科技大学土木与水利工程学院,湖北武汉430074 [2]中铁第四勘察设计院集团有限公司,湖北武汉430063
出 处:《湖南大学学报(自然科学版)》2024年第7期21-29,共9页Journal of Hunan University:Natural Sciences
基 金:国家重点研发计划资助项目(2023YFC3805700);中铁第四勘察设计院集团有限公司课题(KY2023014S,KY2023126S);华中科技大学交叉研究支持计划(2023JCYJ014)。
摘 要:目前,绝大多数基于深度学习的结构损伤识别方法依靠深度神经网络自动提取结构的损伤敏感特征,并通过损伤状态之间特征的差异实现模式分类识别.然而,这些方法面临着损伤量化难度大的挑战,并且需要大量的模型训练数据.本文提出基于模型嵌入循环神经网络(Model-Embedding Recurrent Neural Network,MERNN)的损伤识别方法.首先,通过数据驱动的卷积神经网络(Convolutional Neural Network,CNN)建立荷载-响应之间的映射关系,然后,利用龙格库塔法改进传统的循环神经网络,建立基于循环神经网络架构的数值计算单元.最后,基于结构响应计算值与实测响应残差构成的损失函数与神经网络的自动微分机制来实现结构刚度参数的更新,进而实现结构损伤识别.数值模拟框架与实验室的3层剪切型框架的损伤识别结果表明,本文提出的方法能基于少量响应数据准确量化结构损伤.Currently,the majority of structure damage identification methods based on deep learning rely on deep neural networks to automatically extract damage-sensitive features of structures and achieve pattern classification recognition through the differences in features between damage states.However,these methods face challenges in the accurate quantification of damage and require a large amount of data for model training.This article proposes a damage detection method based on a model-embedding recurrent neural network(MERNN).Firstly,a data-driven convolutional neural network was used to establish the mapping relationship between load and response.Then,the traditional recurrent neural network was improved using the Runge-Kutta method to create a numerical computing unit based on the recurrent neural network architecture.Finally,based on the loss function composed of the residual errors between measured responses and computed responses,the structural stiffness parameters were updated with the automatic differentiation mechanism of the neural network to achieve structural damage identification.Damage identification results of a numerical three-layer frame and a laboratory-scale shear-type frame indicate that the proposed method can accurately quantify structural damage based on the limited amount of response datas.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.20.239.211