检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张柏林 姬港 朱宇轩 许向楠 唐万斌[3] ZHANG Bolin;JI Gang;ZHU Yuxuan;XU Xiangnan;TANG Wanbin(School of System Science and Engineering,Sun Yat-sen University,Guangzhou,510275,China;Institute of Systems Engineering,Academy of Military Science of the People’s Liberation Army,Beijing 100191,China;National Key Laboratory of Wireless Communications,University of Electronic Science and Technology of China,Chengdu 611731,China)
机构地区:[1]中山大学系统科学与工程学院,广州510275 [2]中国人民解放军军事科学院系统工程研究院,北京100191 [3]电子科技大学通信抗干扰全国重点实验室,成都611731
出 处:《电子科技大学学报》2024年第4期511-518,共8页Journal of University of Electronic Science and Technology of China
基 金:新疆维吾尔自治区自然科学基金(2022D01B184);中国博士后科学基金(2020M683290,2021T140095);中央高校基本科研业务费(ZYGX2021J031)。
摘 要:得益于深度学习的发展,使用神经网络提升信号识别性能取得了很大进步。使用半监督方法充分利用未标记数据来辅助深度模型的训练,但是现有的半监督信号识别方法未考虑噪声的影响,因此提出了一种基于深度残差网络(Resnet)的半监督信号识别方法,并利用梯度逆转层改善了噪声对性能的影响。在开源数据集RML2016.10A、RML2016.10B和RML2016.10C上的实验结果表明,该半监督方法可借助少量标签数据信息和未标记数据来有效地训练深度模型,并且能缓解噪声对性能的影响。Benefiting from the development of deep learning,great progress has been achieved in using neural networks to improve signal recognition performance.However,most of the existing deep learning-based signal recognition methods are supervised,which requires a large amount of well-labeled data for training,but the cost of signal labeling is quite expensive.This encourages the semi-supervised methods to make full use of unlabeled data to assist the training of deep models,but existing semi-supervised signal recognition methods do not consider noise influence.Therefore,a semi-supervised signal recognition method is proposed based on deep residual network(Resnet)by using gradient reversal layers to improve noise effect on performance.Experimental results on open source datasets RML2016.10A,RML2016.10B and RML2016.10C show that the proposed semi-supervised method effectively extracts discriminative features from unlabeled data by using a small amount of labeled data information,which alleviates noise influence.
分 类 号:TN911[电子电信—通信与信息系统] TP181[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.17.22