Biophysical-driven piezoelectric and aligned nanofibrous scaffold promotes bone regeneration by re-establishing physiological electrical microenvironment  

在线阅读下载全文

作  者:Aoao Wang Xinbo Ma Yafeng Yang Guoliang Shi Liwei Han Xiantong Hu Rui Shi Jun Yan Quanyi Guo Yantao Zhao 

机构地区:[1]Senior Department of Orthopedics,the Fourth Medical Center of PLA General Hospital,Beijing 100048,China [2]Department of Chemistry,Capital Normal University,Beijing 100048,China [3]National Center for Orthopaedics,Beijing Research Institute of Traumatology and Orthopaedics,Beijing Jishuitan Hospital,Capital Medical University,Beijing 100035,China [4]Xijing 986 Hospital Department,The Fourth Military Medical University,Xi'an 710032,China [5]Institute of Orthopedics,Chinese PLA General Hospital,Beijing Key Laboratory of Regenerative Medicine in Orthopedics,Key Laboratory of Musculoskeletal Trauma&War Injuries PLA,Beijing 100853,China

出  处:《Nano Research》2024年第8期7376-7393,共18页纳米研究(英文版)

基  金:funded by National Natural Science Foundation of China(Nos.82151312,82272493,and 82072406);the Beijing Science Nova Program(No.20220484155);the Natural Science Foundation of Shaanxi Province(No.2023-YBSF-426);Beijing Jishuitan Hospital Elite Young Scholar Programme(No.XKGG2021).

摘  要:The initial healing stages of bone fracture is a complex physiological process involving a series of spatially and temporally overlapping events,including pathogen clearance,immunological modulation,and osteogenesis.In this study,we have developed a piezoelectric and aligned nanofibrous scaffold composed of ZnO@PCL/PVDF with multiple antibacterial,immunomodulatory,and osteogenic effects using electrospinning technology.This scaffold’s piezoelectric signal output under ultrasound(US)control can be similar to the physiological electrical signals of healthy bone tissue,creating a truly biomimetic electrical microenvironment in the bone defect.In vitro studies have shown that ZnO@PCL/PVDF scaffold significantly enhances the proliferation,migration,and osteogenic differentiation of MC3T3-E1 cells under piezoelectric drive provided by ultrasound.Furthermore,the scaffold exhibits inhibitory effects on the growth of E.coli and S.aureus,as well as the ability to induce M2 macrophage polarization,indicating potent antibacterial and immunomodulatory properties.In vivo experiments demonstrated that the ZnO@PCL/PVDF scaffold can accelerate the repair of mandibular defects in rats,effectively inhibit bacterial colonization,and reduce inflammatory responses.Altogether,this study confirms that the newly developed ZnO@PCL/PVDF scaffold effectively promotes bone repair by truly mimicking the endogenous electrical microenvironment and precisely regulating the temporospatial disorders of initial bone healing,thus providing a simple and effective solution for bone defects.

关 键 词:PIEZOELECTRICITY bone defect bacterial infection ZnO nanoparticles IMMUNOMODULATION OSTEOGENESIS 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象