检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘承杰 俞辉 陈宇 戴厚德 LIU Chengjie;YU Hui;CHEN Yu;DAI Houde(School of Advanced Manufacturing,Fuzhou University,Quanzhou 362000,Fujian Province,China;Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350108,Fujian Province,China;College of Mechanical and Electrical Engineering,Fujian Agriculture and Forestry University,Fuzhou 350100,Fujian Province,China;Fujian Key Laboratory of Special Intelligent Equipment Safety Measurement and Control,Fujian Special Equipment Inspection and Research Institute,Fuzhou 350008,Fujian Province,China)
机构地区:[1]福州大学先进制造学院,福建泉州362000 [2]中国科学院福建物质结构研究所,福建福州350108 [3]福建农林大学机电工程学院,福建福州350100 [4]福建省特种设备检验研究院福建省特种智能装备安全与测控重点实验室,福建福州350008
出 处:《化学工程》2024年第7期77-81,94,共6页Chemical Engineering(China)
基 金:福建省特种智能装备安全与测控重点实验室(FJIES2023KF02);泉州市科技计划项目(2022C004L)。
摘 要:为揭示物理信息神经网络在生化领域中的潜力,研究一种基于现代物理信息机器学习工具的新参数估计方法,并通过酶促反应过程模型的案例研究进行了演示,比较软、硬边界约束设置对计算结果的影响。实验分析表明,利用软、硬2种不同约束的物理信息神经网络均能获得精确的模型参数估计值,并在所有的可观测变量上的拟合优度R^(2)在0.98以上,所得到的系统模型能够较好地反映系统的动态过程。所提出的方法融合了模型驱动与数据驱动方法的优势,并且能够在基于采样40次的含噪声小型数据集上获得稳健的训练结果,显著降低对数据量的要求。To reveal the potential of physics-informed neural networks in biochemistry,a new parameter estimation method based on modern physics-informed machine learning tools was investigated and its function was demonstrated through a case study of enzymatic synthesis process and the effects of soft and hard boundary constraint settings were compared on the computational results.The experimental results show that both physics-informed neural networks with soft and hard constraints can accurately estimate model parameters,with goodness of fit R^(2)above 0.98 on all observable variables.The resulting system model can better reflect the dynamic process of the system.The proposed method combines the advantages of model-driven and data-driven approaches and achieves robust training results on a small dataset based on 40 noisy samples,significantly reducing the required data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.93.197