检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白贵龙 牛锐祥 Bai Guilong;Niu Ruixiang(Silicon Steel Business Unit of Shanxi Taigang Stainless Steel Co.,Ltd.,Taiyuan Shanxi 030002,China)
机构地区:[1]山西太钢不锈钢股份有限公司硅钢事业部,山西太原030002
出 处:《山西冶金》2024年第6期32-34,共3页Shanxi Metallurgy
摘 要:带钢表面质量是衡量产品性能的重要指标,准确识别带钢表面缺陷是带钢生产过程的关键一环,剪除缺陷带钢对于提升带钢成材率具有重要意义。为提升带钢表面缺陷识别的准确率,构建了基于CNN的带钢表面缺陷识别模型,通过多个卷积层提取图像特征,从而自动识别缺陷类别,实现了端到端的带钢表面缺陷识别过程。实验结果表明,CNN模型对于带钢表面缺陷识别准确率达到了96.5%,识别一张图片时间仅为1.5 ms,基本满足了带钢缺陷识别要求。The surface quality of strip steel is an important indicator for measuring product performance.Accurately identifying surface defects of strip steel is a key link in the production process of strip steel.Cutting off defective strip steel is of great significance for improving the yield of strip steel.In order to improve the accuracy of surface defect recognition for strip steel,a CNN based model for surface defect recognition of strip steel was constructed.Image features were extracted through multiple convolutional layers to automatically identify defect categories,achieving end-to-end surface defect recognition of strip steel.The experimental results show that the CNN model achieves an accuracy of 96.5%for identifying surface defects on strip steel,and the recognition time for one image is only 1.5 ms,which basically meets the requirements of strip steel defect recognition.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.153.112