检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶丽霞 王川 YE Lixia;WANG Chuang(School of Mathematics and Computer,Wuyishan,Fujian 354300)
机构地区:[1]武夷学院数学与计算机学院,福建武夷山354300
出 处:《武夷学院学报》2024年第6期12-14,共3页Journal of Wuyi University
基 金:福建省教育厅中青年项目(JAT220386)。
摘 要:通过几类经典实例,探讨傅里叶级数在数项级数求和、常微分方程和波动方程中的应用。通过选取合理的函数,将其展开成傅里叶级数,傅里叶级数在某个特殊点的值求得数项级数的和。考虑二阶常微分方程的通解的结构具有傅里叶级数的形式,通过待定系数法,求得微分方程的通解。对于具有初边值问题的波方程,通过变量替换法,得出具有傅里叶级数的非平凡的特解,利用逐项求导和积分的方法,得出傅里叶系数,从而得出该波方程的特解。By using several classic examples,this paper discusses the application of Fourier series in the summation of Multinomial series,ordinary differential equations and wave equations.By choosing a reasonable function and expanding it into a Fourier series,the value of the Fourier series at a particular point is found as a sum of several terms of the series.The general solution of a second-order ordinary differential equation is considered as the form of a Fourier series,by the method of coefficients to be determined,it is derived.For a wave equation with an initial margin problem,a nontrivial special solution with a Fourier series is derived by the variable substitution method,and the Fourier coefficients are derived by utilizing a term-by-term method of derivatives and integrals to arrive at a special solution of this wave equation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28