基于GWO-DBSCAN算法的电商用户价值分类模型设计与实现  

在线阅读下载全文

作  者:赵煜 卢胜男[1] ZHAO Yu;LU Shengnan

机构地区:[1]西安石油大学,陕西西安710065

出  处:《信息技术与信息化》2024年第7期68-71,共4页Information Technology and Informatization

摘  要:基于对电商平台用户画像中用户价值标签的现状了解,分析了以往电商平台常用的K-means聚类方法的不足之处,并在此基础上选取多个聚类方法进行横向对比,确定了GWO-DBSCAN聚类方法来处理电商用户行为数据。采用基于密度划分的DBSCAN聚类算法,针对DBSCAN算法聚类效果受扫描半径eps和最小包含点minpts影响较大的问题,利用灰狼优化算法的全局寻优特性对最佳扫描半径eps和最小包含点minpts求解,实现对电商用户群体更合理的聚类。通过实践检验发现,采取GWO-DBSCAN算法聚类的结果与使用其他聚类方法得到的结果相比,在用户分类的合理性方面有较明显的提升。

关 键 词:用户价值分析 聚类算法 RFM模型 灰狼优化算法 DBSCAN算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP311.13[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象