检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王美琪 曾思恒 李源 刘鹏飞[1,2] WANG Meiqi;ZENG Siheng;LI Yuan;LIU Pengfei(State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;School of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
机构地区:[1]石家庄铁道大学交通工程结构力学行为与系统安全国家重点实验室,河北石家庄050043 [2]石家庄铁道大学机械工程学院,河北石家庄050043
出 处:《西南交通大学学报》2024年第4期812-822,共11页Journal of Southwest Jiaotong University
基 金:国家自然科学基金(12102273)。
摘 要:为研究控制器时滞对磁浮列车悬浮系统稳定性的影响,首先,以位移-速度为反馈控制参数,建立考虑控制器时滞的二自由度磁浮列车悬浮系统模型;其次,通过Routh-Hurwitz稳定性判据得到无时滞系统的稳定性区域,同时,依据特征根穿越虚轴边界条件,获得系统发生Hopf分岔的控制器时滞临界值;最后,分析反馈控制参数及系统参数与控制器时滞临界值的关系.研究结果表明:当系统参数一定时,控制器时滞临界值随位移控制增益的增大而减小,随速度控制增益的增大先增大后减小;当反馈控制参数一定时,控制器时滞临界值随二系刚度的增大而减小,随二系阻尼的增大而增大;当系统时滞以10^(−6)数量级在时滞临界值附近渐渐增大时,系统会从稳定—周期运动—不稳定逐渐变化,期间发生超临界Hopf分岔.In order to study the influence of controller time lag on the stability of the levitation system of the magnetic levitation train,firstly,the two-degree-of-freedom magnetic levitation train levitation system model is established by taking displacement-velocity as the feedback control parameter,and the controller time lag is taken into account;secondly,the stability region of the time lag-free system is obtained by the stability criterion of Routh-Hurwitz,meanwhile,based on the characteristic root crossing the imaginary axis boundary condition,we obtain the critical value of the time lag of the controller when the system undergoes Hopf bifurcation;finally,we analyze the relationship between the feedback control parameters and the system parameters and the critical value of the controller time lag.The results show that:when the system parameters are certain,the critical value of the controller time lag decreases with the increase of the displacement control gain,and increases and then decreases with the increase of the velocity control gain;when the feedback control parameters are certain,the critical value of the controller time lag decreases with the increase of the secondary suspension stiffness,and increases with the increase of the secondary suspension damping;as the time lag of the system increases asymptotically by an order of magnitude 10^(−6) around the critical value of time lag,the system will gradually change from stable-periodic motion-unstable,during which the supercritical Hopf bifurcation occurs.
分 类 号:O324[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49