检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马跃 张文强[2] 牛宽 常君瑞 徐亭 于新海 MA Yue;ZHANG Wen-Qiang;NIU Kuan;CHANG Jun-Rui;XU Ting;YU Xin-Hai(Department of Electrical Engineering,Hetao College,Bayannaoer 015000,China;College of Engineering,China Agricultural University,Beijing 100083,China)
机构地区:[1]河套学院机电工程系,巴彦淖尔015000 [2]中国农业大学工学院,北京100083
出 处:《食品安全质量检测学报》2024年第13期177-185,共9页Journal of Food Safety and Quality
基 金:河套学院科学技术研究项目(HYZQ202116);河套学院科技创新团队支持;内蒙古自治区高等学校研究专项(STAQZX202313)。
摘 要:水果中富含多种营养成分,随着经济和社会生活水平的提高,高品质水果越来越受人们的青睐,其外观品质已经成为影响消费者采购的重要因素。早期我国主要依赖人工对水果进行分级,效率和准确率较低,成本和工人劳动强度较大。近年来随着机器视觉技术的不断发展,大量的学者将视觉技术应用到水果外观品质的检测中,这种技术具有无损坏、低成本、高效率和操作方便等优点。本文结合国内外学者的研究成果,梳理了机器视觉在水果外观颜色、形状、大小、缺陷和纹理检测中的应用,着重介绍了缺陷提取和分类器对水果识别算法的研究进展,分析了传统视觉分级、机器学习和深度学习的应用特点,提出了机器视觉技术存在的问题并对未来发展趋势进行了展望,以期为水果外观品质检测研究提供参考与借鉴。Fruits are rich in various nutrients.With the improvement of economic and social living standards,high-quality fruits are increasingly favored by people,and their appearance quality has become an important factor affecting consumer procurement.In the early stage,China mainly relied on manual grading of fruits,which resulted in low efficiency and accuracy,as well as high costs and labor intensity for workers.In recent years,with the continuous development of machine vision technology,a large number of scholars have applied vision technology to the detection of fruit appearance quality.This technology has advantages such as no damage,low cost,high efficiency,and easy operation.This article combined the research results of domestic and foreign scholars to sort out the application of machine vision in fruit appearance color,shape,size,defects,and texture detection.It focused on the research progress of defect extraction and classifiers on fruit recognition algorithms,analyzed the application characteristics of traditional visual grading,machine learning,and deep learning,proposes the problems of machine vision technology,and looked forward to future development trends,to provide reference and inspiration for research on fruit appearance quality detection.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TS255.7[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7