检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵丽洁[1,2] 李纯 沈金生 王昊[3] ZHAO Lijie;LI Chun;SHEN Jinsheng;WANG Hao(School of Civil Engineering,Hebei University of Engineering,Handan 056038,China;School of Water Conservancy Engineering,Tianjin Agricultural University,Tianjin 300392,China;School of Civil Engineering,Tianjin Chengjian University,Tianjin 300384,China)
机构地区:[1]河北工程大学土木工程学院,河北邯郸056038 [2]天津农学院水利工程学院,天津300392 [3]天津城建大学土木工程学院,天津300384
出 处:《地震工程与工程振动》2024年第4期62-69,共8页Earthquake Engineering and Engineering Dynamics
基 金:国家自然科学基金项目(52208193)。
摘 要:为了避免地基不均匀沉降导致隔震支座沉降以及对上部结构造成的隐性损伤,针对隔震支座沉降识别方法进行研究,提出一种基于多输入卷积神经网络(multi-input convolutional neural network,MI-CNN)的隔震支座振动信号识别模型。首先,采集隔震支座水平方向加速度和位移信号,采用归一化预处理和数据增强方法扩充样本;然后,将样本输入到所建立的网络模型中并进行训练;最后,利用完成训练的网络模型进行沉降识别。结果表明:相较于传统单输入卷积神经网络(Convolutional neural network,CNN)模型,MI-CNN模型易于训练,可最大程度地发挥CNN对沉降信号特征的提取能力,且具有更好的沉降位置识别准确率和更小的沉降程度识别误差,以及针对不均衡数据集更稳定的识别效果。研究结果可为隔震支座沉降识别提供新思路。In order to avoid the settlement of seismic isolation bearings caused by uneven foundation settlement and the hidden damage to the superstructure,a vibration signal identification model based on multi-input convolutional neural network(MI-CNN)is proposed to identify the settlement of seismic isolation bearings.First,the horizontal acceleration and displacement signals of seismic isolation bearings are collected,and the samples are expanded using normalised pre-processing and data enhancement methods.Then,the samples are fed into the established network model and trained.Finally,the settlement identification is performed using the trained network model.The results show that compared with the traditional single-input CNN model,the MI-CNN model is easier to train and can maximise the ability of CNN to extract features from the settlement signals,and it has a better accuracy in identifying the settlement location,a smaller error in identifying the settlement degree,and a more stable identification effect for the unbalanced data set.The results of this study can provide new ideas for the settlement identification of seismic isolation bearings.
分 类 号:TU375.4[建筑科学—结构工程] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49