检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱广贺 朱智强 袁逸萍[3] ZHU Guang-he;ZHU Zhi-qiang;YUAN Yi-ping(College of Computer Science and Technology,Xinjiang Normal University,Urumqi 830000,China;College of Software Engineering,Xinjiang University,Urumqi 830000,China;College of Mechanical Engineering,Xinjiang University,Urumqi 830000,China)
机构地区:[1]新疆师范大学计算机科学技术学院,乌鲁木齐830000 [2]新疆大学软件工程学院,乌鲁木齐830000 [3]新疆大学机械工程学院,乌鲁木齐830000
出 处:《吉林大学学报(工学版)》2024年第7期2086-2092,共7页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(71961029)。
摘 要:为了提高连续生产流水线的调度效果,提升生产线的加工效率,提出连续生产流水线深度强化学习优化调度算法。首先,结合蒙特卡罗算法和贝叶斯评估方法降低连续生产线流水线问题的数据复杂度;其次,采用深度神经网络模型优化流水线调度参数,对其进行评估及编码;最后,将迭代贪婪算法与深度强化学习方法结合,对调度数据问题实施模型求解,实现连续生产流水线调度。试验结果表明:本文算法的调度结果最优,综合评价结果均高于0.9531,工序延时优化至5 min以下,收敛速度较快,提升了生产线的加工效率。In order to improve the scheduling effect of the continuous production line and improve the processing efficiency of the production line,a deep reinforcement learning optimization scheduling algorithm for the continuous production line is proposed.Combining Monte Carlo algorithm and Bayesian evaluation method to reduce the data complexity of the continuous production line problem;A deep neural network model is used to optimize the pipeline scheduling parameters,evaluate and code them;The iterative greedy algorithm is combined with the deep reinforcement learning method to solve the scheduling data problem and realize the continuous production line scheduling.The experimental results show that the optimal comprehensive evaluation results of the scheduling results of the proposed algorithm are higher than 0.9531,and the process delay is optimized to less than 5 min,which improves the processing efficiency of the production line.
关 键 词:深度强化学习 流水线生产 调度优化 迭代贪婪算法 数据降维
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.65.73