检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁宇航 Yuhang Ding(School of Information Science and Engineering,Zhejiang Sci-Tech University,Hangzhou Zhejiang)
出 处:《建模与仿真》2024年第4期4953-4961,共9页Modeling and Simulation
基 金:国家级大学生创新创业训练计划项目(202310338067)。
摘 要:目前食用油市场发展迅速但掺假情况严重,既损害了消费者的利益,同时又干扰了市场秩序。且国内缺乏一套具有自主知识产权的智能便携式食用油掺假检测系统。本文设计了一款基于多元线性回归算法的便携式食用油掺假检测系统,该系统在多元线性回归算法(MLR)的基础上进行拓展,对电子鼻采集到的食用油的气味信号进行处理,实现对食用油的掺假成分的定性分析和定量计算。实验结果表明所设计的基于MLR的算法对食用油的定性分析准确率可达97%,对食用油掺假定量识别误差率小于4%。The edible oil market is currently developing rapidly but is plagued by severe adulteration issues,which harm consumer interests and disrupt market order.Moreover,there is a lack of an intelli-gent portable edible oil adulteration detection system with independent intellectual property rights in China.This paper designs a portable edible oil adulteration detection system based on the multiple linear regression(MLR)algorithm.The system expands on the MLR algorithm to process the odor signals of edible oils collected by an electronic nose,achieving qualitative analysis and quantitative calculation of the adulteration components in edible oils.Experimental results show that the designed system based on the MLR algorithm has an accuracy rate of up to 97%for qua-litative analysis of edible oils and a quantitative recognition error rate of less than 4%for edible oil adulteration.
分 类 号:TS2[轻工技术与工程—食品科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70