基于多元线性回归的食用油掺假检测模式识别算法设计与优化  

Design and Optimization of Edible Oil Adulteration Detection Mode Recognition Algorithm Based on Multiple Linear Regression

在线阅读下载全文

作  者:丁宇航 Yuhang Ding(School of Information Science and Engineering,Zhejiang Sci-Tech University,Hangzhou Zhejiang)

机构地区:[1]浙江理工大学信息科学与工程学院,浙江杭州

出  处:《建模与仿真》2024年第4期4953-4961,共9页Modeling and Simulation

基  金:国家级大学生创新创业训练计划项目(202310338067)。

摘  要:目前食用油市场发展迅速但掺假情况严重,既损害了消费者的利益,同时又干扰了市场秩序。且国内缺乏一套具有自主知识产权的智能便携式食用油掺假检测系统。本文设计了一款基于多元线性回归算法的便携式食用油掺假检测系统,该系统在多元线性回归算法(MLR)的基础上进行拓展,对电子鼻采集到的食用油的气味信号进行处理,实现对食用油的掺假成分的定性分析和定量计算。实验结果表明所设计的基于MLR的算法对食用油的定性分析准确率可达97%,对食用油掺假定量识别误差率小于4%。The edible oil market is currently developing rapidly but is plagued by severe adulteration issues,which harm consumer interests and disrupt market order.Moreover,there is a lack of an intelli-gent portable edible oil adulteration detection system with independent intellectual property rights in China.This paper designs a portable edible oil adulteration detection system based on the multiple linear regression(MLR)algorithm.The system expands on the MLR algorithm to process the odor signals of edible oils collected by an electronic nose,achieving qualitative analysis and quantitative calculation of the adulteration components in edible oils.Experimental results show that the designed system based on the MLR algorithm has an accuracy rate of up to 97%for qua-litative analysis of edible oils and a quantitative recognition error rate of less than 4%for edible oil adulteration.

关 键 词:食用油掺假 多元线性回归 电子鼻 掺假检测 

分 类 号:TS2[轻工技术与工程—食品科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象