检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张娜 罗昊 邱毅伟 詹刚垚 温积森 吕碧沪 匡翠方[2] 朱大钊 刘旭[2] Zhang Na;Luo Hao;Qiu Yiwei;Zhan Gangyao;Wen Jisen;LüBihu;Kuang Cuifang;Zhu Dazhao;Liu Xu(Research Center for High Performance Computing System,Zhejiang Lab,Hangzhou,Zhejiang 311121,China;State Key Laboratory of Extreme Photonics and Instrumentation,College of Optical Science and Engineering,Zhejiang University,Hangzhou,Zhejiang 310027,China;Frontier Fundamental Research Center,Zhejiang Lab,Hangzhou,Zhejiang 311121,China;Research Center for Novel Computational Sensing and Intelligent Processing,Zhejiang Lab,Hangzhou,Zhejiang 311121,China;Department of Scientific Research Conditions Management,Zhejiang Lab,Hangzhou,Zhejiang 311121,China)
机构地区:[1]之江实验室高效能计算系统研究中心,浙江杭州311121 [2]浙江大学光电科学与工程学院极端光学技术与仪器全国重点实验室,浙江杭州310027 [3]之江实验室前沿基础研究中心,浙江杭州311121 [4]之江实验室新型计算传感与智能处理研究中心,浙江杭州311121 [5]之江实验室科研条件管理部,浙江杭州311121
出 处:《中国激光》2024年第12期382-388,共7页Chinese Journal of Lasers
基 金:国家重点研发计划(2022YFC2403100,2021YFF0502700);浙江省“尖兵”“领雁”研发攻关计划(2023C01051);国家自然科学基金(62105298,12204434);浙江省自然科学基金(LQ22F050017)。
摘 要:激光直写是一项应用广泛的微纳加工技术。但受限于通量,单通道激光直写技术无法实现大面积应用。为此,提出并验证一种多通道激光直写技术,以提升激光直写技术的通量。与传统的以空间光光路为基础的多通道系统不同,介绍的技术使用光纤器件实现多通道并行刻写,且每个通道可独立调控。通过加工多种微纳结构进行测试,证明搭建的系统兼容多种光刻胶,在ps量级脉宽情况下可实现横向126 nm、纵向222 nm的加工精度。系统结构紧凑,具备加工大面积复杂图形、三维结构的能力,证明光纤器件应用在多通道系统中的可行性,为高通量激光直写技术发展提出新的技术途径。Objective Direct laser writing(DLW)has the advantages of writing any three-dimensional structure without mask plates,in a simple process flow,and with minimal environmental requirements,and it finds widespread application in micro/nano processing technology.However,owing to throughput limits,single-channel DLW cannot be used for large-area fabrication.Currently,instead of single-channel,multi-channel parallel writing is the most direct and effective approach.The reported methods for generating multiple beams typically rely on the construction of a spatial light path,which has been extensively studied.However,challenges persist in generating large numbers of channels.Issues such as poor spot uniformity,independent modulation problems,and system complexity hinder further application of the DLW technology.To improve the throughput of the DLW technology,we designed and verified a multi-channel parallel lithography technology.This technology can achieve a manufacturing accuracy of 126 nm transversely and 222 nm longitudinally under the condition of a picosecond pulse width,and it can process large-area complex patterns and threedimensional structures.Methods In this research,we construct a single-channel fiber DLW system using fiber-optic devices.This method is first validated using the system,after which the number of channels in the system is increased to 10.A femtosecond laser source and a dispersion compensation module for dispersion pre-compensation are employed.The laser beam is split using a spatial light splitter and fiberoptic splitters to produce 10 beams.Each beam is independently modulated using a fiber acoustic-optical modulator(FAOM),and the fiber array outputs 10 Gaussian spots that are closely aligned in the same plane.This system comprises two types of scanning devices:a galvanometer scanner and a three-dimensional translational platform.Using the FAOM and scanning devices,large-size and threedimensional lithography is realized.Results and Discussions Two photoresists were used to evaluate the optical
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.151.179