在线优化参数的无模型预测神经网络自抗扰控制  

Network Active Disturbance Rejection Control

在线阅读下载全文

作  者:侯小秋 Hou Xiaoqiu(School of Electronics and Controlling Engineering,Heilongjiang University of Science and Technology,Harbin City,Heilongjiang Province 150022)

机构地区:[1]黑龙江科技大学电气与控制工程学院,黑龙江哈尔滨150022

出  处:《黄河科技学院学报》2024年第8期12-18,共7页Journal of Huanghe S&T College

摘  要:关于难以建模的非线性系统的控制问题,提出具有辅助变量的全格式动态线性化方法逼近非线性系统模型,基于其构建系统的预测模型,给出采用直接极小化指标函数自适应优化算法的参数估计算法,在扩张状态观测器中引入控制输入的微分项,并将控制输入和其微分的系数改进为关于观测状态的函数,因其未知,使用RBF神经网络逼近,利用非线性递推最小二乘法同时优化RBF神经网络参数和自抗扰控制器参数,综上研究提出在线优化参数的无模型预测神经网络自抗扰控制算法。仿真研究验证了上述研究的合理性和有效性,系统响应精度高。Regarding the control issues of complex nonlinear systems that are difficult to model,a comprehensive dynamic linearization method incorporating auxiliary variables is proposed to approximate the nonlinear system model.Parametric estimation algorithm is obtained by using the adaptive optimization algorithm for direct minimization of index function.Differential term of control input is introduced into the extended state observer,and the control input and the factor of its differential term are transformed into function of observer status.Due to its unknown nature,an RBF neural network is employed for approximation.The nonlinear recursive least squares method is utilized to simultaneously optimize the parameters of the RBF neural network and the active disturbance rejection controller.In summary,this research proposes a model-free predictive neural network active disturbance rejection control algorithm with online parameter optimization.Simulation studies have validated the rationality and effectiveness of the proposed approach,demonstrating high system response accuracy.

关 键 词:自抗扰控制 神经网络控制 无模型自适应控制 预测控制 非线性系统 直接极小化指标函数自适应优化算法 非线性递推最小二乘法 在线优化参数 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象