检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王军淮 邱涵 杨博 张韦毅 钟俊逸 任凤雷 WANG Junhuai;QIU Han;YANG Bo;ZHANG Weiyi;ZHONG Junyi(National Experimental Teaching Demonstration Center for Electromechanical Engineering(Tianjin University of Technology),Tianjin 300384,China;Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control,Tianjin University of Technology,Tianjin 300384,China)
机构地区:[1]机电工程国家级实验教学示范中心(天津理工大学),天津300384 [2]天津理工大学天津市先进机电系统设计与智能控制重点实验室,天津300384 [3]不详
出 处:《科技创新与生产力》2024年第8期92-97,共6页Sci-tech Innovation and Productivity
摘 要:目前,全景自动驾驶感知中的多任务学习取得了显著成果。其中对象检测和分割任务极其重要,可以帮助决策、提供路线规划和安全信息。然而,目标检测和分割仍有限制,需要大量数据和先验信息。为了使自动驾驶中的多任务学习更加高效准确,本文将嵌入式平台融入车道线检测的研究当中,融合了车道线检测和障碍物检测,可以有效提高计算效率和环境感知。同时,本文使用NVIDIA嵌入式平台对深度学习进行部署并能够保持先进性能。This paper points out that,at present,multi-task learning in panoramic autonomous driving perception has made significant achievements and achieved remarkable results.Among them,object detection and segmentation tasks are extremely important,which can help in decision-making,route planning and safety information.However,object detection and segmentation still have limitations,requiring large amounts of data and prior information.In order to make multi-task learning in automatic driving more efficient and accurate,this paper integrates the embedded platform into the research of lane detection,integrating lane detection and obstacle detection,which can effectively improve the computing efficiency and environment perception.This paper also deploys deep learning using NVIDIA's embedded platform and maintain advanced performance.
分 类 号:U463.6[机械工程—车辆工程] TP391.41[交通运输工程—载运工具运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.44.204