基于有限元仿真的ECT感兴趣区域高分辨率图像重建  

High-resolution Image Reconstruction of ECT Region of Interest Based on Finite Element Simulation

在线阅读下载全文

作  者:张立峰[1,2] 陈达 Zhang Lifeng;Chen Da(Department of Automation,North China Electric Power University,Baoding 071003,China;Baoding Key Laboratory of State Detection and Optimization Regulation for Integrated Energy System,Baoding 071003,China)

机构地区:[1]华北电力大学自动化系,河北保定071003 [2]保定市综合能源系统状态检测与优化调控重点实验室,河北保定071003

出  处:《系统仿真学报》2024年第8期1823-1831,共9页Journal of System Simulation

基  金:国家自然科学基金(61973115)。

摘  要:感兴趣区域的高分辨率图像重建是电容层析成像(electrical capacitance tomography,ECT)技术的研究热点之一。均匀电极分布的ECT模型仅在重建场域的边界位置具有较高的灵敏度系数,不适用于感兴趣区域成像。为改善感兴趣区域中的灵敏度分布,提高图像分辨率,提出了一种基于有限元仿真ECT感兴趣区域高分辨率图像重建方法,根据保角变换理论优化电极分布。进行了仿真实验,将均匀电极和优化电极分布的灵敏度矩阵代入Tikhonov算法、Landweber算法和ART算法,重建结果表明上述方法可有效提高感兴趣区域的图像重建精度。High-resolution image reconstruction of interest region is one of the research hotspots of electrical capacitance tomography(ECT)technology.The ECT model with uniform electrode distribution only has a high sensitivity coefficient at the boundary position of the reconstructed field and is not suitable for imaging regions of interest.In order to improve the sensitivity distribution in the region of interest and improve image resolution,a high-resolution image reconstruction method of ECT region of interest based on finite element simulation is proposed,and the electrode distribution is optimized according to the conformal transformation theory.Simulation experiments are conducted,and the sensitivity matrices of uniform electrodes and optimized electrode distribution are substituted into the Tikhonov,Landweber,and ART algorithms.Reconstruction results show that the above method can effectively improve image reconstruction accuracy of interest region.

关 键 词:电容层析成像 有限元仿真 感兴趣区域 灵敏度矩阵 保角变换 电极分布 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] TN911.73[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象