人体上肢运动姿态多点视觉自动跟踪仿真  

Multi-Point Visual Automatic Tracking and Imitation of Human Upper Limb Movement Posture

在线阅读下载全文

作  者:刘硕[1] 荆瑞俊 LIU Shuo;JING Rui-jun(Shanxi University,Taiyuan Shanxi 030006,China;School of Software,Shanxi Agricultural Un iversity,Taiyuan Shanxi 030031,China)

机构地区:[1]山西大学,山西太原030006 [2]山西农业大学软件学院,山西太原030031

出  处:《计算机仿真》2024年第7期285-289,共5页Computer Simulation

基  金:山西省科技厅重点项目(202204031401003)。

摘  要:由于视觉传感器本身的噪声以及运动模糊等原因,使得采集的运动上肢姿态数据存在噪声和误差,导致多点视觉自动跟踪精度较低。为此,提出人体运动上肢姿态多点视觉自动跟踪方法仿真。布设多维传感器对姿态多点采集,建立传感器加速度误差模型,获取误差修正目标函数,利用蚁群算法(Ant Colony Optimization, ACO)寻优,修正传感器采集过程中的误差;采用卡尔曼滤波算法(Kalman Filtering Algorithm, Kalman),实现人体运动上肢姿态的多点视觉自动跟踪。实验结果表明,所提方法能够在保障跟踪稳定性的用时,提高姿态跟踪的精度和效率,跟踪耗时仅为10ms左右。The noise inherent in visual senso rs and motion blur results in noisy and erron eous data when capturing the upper limb movement poses,as well as lower accuracy in multi-point visual automat ic tracking.Therefore,a multi-point visual automatic tracking metho d for human upper limb movement postures was proposed.Firstly,multidimensional sensors were deployed to collect the postures from multiple points.Then,a sensor accele ration error model was built to obtain an objective functi on of error correction.Moreover,the Ant Colony Optimization(ACO)algorithm was utilized for optimization,thus c orrecting the errors in the acquisition proc ess of sensors.Finally,the Kalman Filtering Algorithm(Kalman)was employed to achieve the multi-point visual automatic tracking of human upper limb movement poses.Experimental results show that the proposed method can improve the a ccuracy and efficiency of pose tracking while ensuring tracking stability.The tracking time is only around 10ms.

关 键 词:多维传感器 蚁群算法 误差修正 卡尔曼滤波 姿态跟踪 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象