检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘翀 LIU Chong
机构地区:[1]国网湖南省电力有限公司长沙市湘江新区供电分公司,湖南长沙410000
出 处:《电力系统装备》2024年第7期111-113,共3页Electric Power System Equipment
摘 要:配网线路作为电网的重要组成部分,其运维质量至关重要。为实现配网线路智能化巡检,提升配网线路数字化运检质效,提出基于视觉识别的配网线路无人机自适应巡检方案。采用视觉识别引导,自动规划航迹,自动寻塔,识别确定航线方向上的下级杆塔。通过采用基于深度学习的目标检测算法,轻量化模型和卷积神经网络,使线路缺陷识别更加高效准确。As an important component of the power grid,the power distribution network lines have wide coverage area,poor environment,long distance,large workload and high quality requirements of operation and maintenance.To achieve intelligent inspection of distribution network lines and improve the quality and efficiency of digital operation and inspection of distribution network lines.An adaptive inspection scheme base on visual recognition for power distribution network lines is proposed in this paper.Using visual recognition guidance,automatically planning the trajectory,automatically searching for towers,and identifying lower level towers in the direction of the determined route.By adopting object detection algorithms base on deep learning,lightweight models,and convolutional neural networks,defect recognition of power network is more efficient and accurate.
分 类 号:TM76[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222