基于组合权重法的云南省地质灾害灾情年度评价及预测  

Annual Evaluation and Prediction of Geological Disasters in Yunnan Province Based on Combination Weight Method

在线阅读下载全文

作  者:刘静[1,3,4] 杨迎冬 魏蕾 陈安 Liu Jing;Yang Yingdong;Wei Lei;Chen An(Faculty of Land and Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China;Yunnan Institute of Geoenvironment Monitoring,Kunming 650216,China;Key Laboratory of Geohazard Forecast and Gynecological Restoration in Plateau Mountainous Area,MNR,Kunming 650216,China;Yunnan Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area,Kunming 650216,China)

机构地区:[1]昆明理工大学国土资源工程学院,昆明650093 [2]云南省地质环境监测院,昆明650216 [3]自然资源部高原山地地质灾害预报预警与生态保护修复重点实验室,昆明650216 [4]云南省高原山地地质灾害预报预警与生态保护修复重点实验室,昆明650216

出  处:《科技通报》2024年第8期90-94,106,共6页Bulletin of Science and Technology

基  金:云南省地质灾害气象风险预警业务能力建设(云财资环〔2022〕4号);云南省地质灾害精细化调查与风险评价综合遥感(云财资环〔2020〕68号);云南省地质灾害隐患识别(云财资环〔2021〕23号);云南高原地质环境特征与地质灾害发育规律研究(云自然资地勘〔2020〕445号)。

摘  要:为合理评价云南省地质灾害灾情年度等级,探寻地质灾害的时序发展规律,并预测未来年份地质灾害灾情等级,本文选取死亡失踪人数、直接经济损失、灾情数量3个影响因素作为权重指标,采用层次分析法与熵权法相结合的组合权重法对1991—2020年地质灾害灾情年度等级进行评价。利用差分自回归积分移动平均模型(autoregressive inte-grated moving average method,ARIMA)和BP(back propagation)神经网络模型2种方法,对2021年、2022年、2023年灾情等级进行对比预测和验证。研究表明:地质灾害灾情年度具有5年的周期性变化特征,BP神经网络预测结果准确性更高,根据BP神经网络预测2023年为较轻灾年,从2019年开始地质灾害灾情年度等级有加重的趋势。To reasonably evaluate the annual level of geological disaster in Yunnan Province,explore the temporal development rules of geological disasters,and predict the disaster levels for future years,three influencing factors,namely,death and missing persons,direct economic losses,and the number of disasters,were selected as weight indicators.The combination weighting method of Analytic Hierarchy Process and entropy weight method was used to evaluate the annual level of geological disasters from 1991 to 2020.By using the autoregressive inte-grated moving average method(ARIMA)and back propagation(BP)neural network model,a comparative prediction and validation of the disaster levels for the years 2021,2022 and 2023 were conducted.The study revealed that the annual levels of geological disasters exhibit a periodicity of 5 years.The BP model showed higher accuracy in predicting disaster levels.Prediction based on BP neural network,2023 is expected to be a year with a relatively light disaster level.Since 2019,there has been a trend of increasing severity in the annual levels of geological disasters.

关 键 词:地质灾害 灾情 组合权重法 BP神经网络 预测 

分 类 号:X43[环境科学与工程—灾害防治]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象