机构地区:[1]中国科学院西双版纳热带植物园,中国科学院热带植物资源可持续利用重点实验室,昆明650223 [2]中国科学院大学,北京100049
出 处:《天然产物研究与开发》2024年第8期1307-1319,1297,共14页Natural Product Research and Development
基 金:云南省重大科技专项(202102AA100014);云南省省级环保专项(E1YN051K)。
摘 要:对水杨梅(Adina rubella)根的化学成分及其α-葡萄糖苷酶抑制活性进行研究。通过硅胶、Sephadex LH-20和半制备HPLC等多种色谱分离技术,从水杨梅根的乙酸乙酯部位中分离得到25个化合物,并运用现代波谱学方法鉴定为奎诺酸(1)、奎诺酸-3-O-β-D-吡喃葡萄糖苷(2)、奎诺酸-3-O-β-D-岩藻糖苷(3)、奎诺酸-3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖酯(4)、gongganoside C(5)、gongganoside A(6)、奎诺酸-3-O-β-D-岩藻糖-28-O-β-D-吡喃葡萄糖酯(7)、奎诺酸-3-O-β-D-奎诺糖-28-O-β-D-吡喃葡萄糖酯(8)、齐墩果酸(9)、芥子醛(10)、松柏醛(11)、3,5-O-二咖啡酰基奎宁酸甲酯(12)、3,4-O-二咖啡酰基奎宁酸甲酯(13)、methyl-4,5-di-caffeoyl-quinate(14)、大花葵苷(15)、undulatoside A(16)、5,7-dihydroxy-2-methylchromone-7-O-β-D-apiosyl-(1→6)-O-β-D-glucoside(17)、马钱苷(18)、马钱苷酸(19)、谷甾醇(20)、6′-O-乙酰基-β-胡萝卜苷(21)、胡萝卜苷(22)、丁香醛(23)、3,4,5-trimethoxyphenyl-1-O-β-D-apiofuranosyl-(1′′→6′)-O-β-D-glucopyranoside(24)、栗柄醇(25)。化合物2~8、10~14、16、17、19、21、23~25为首次从水杨梅根中分离得到。α-葡萄糖苷酶抑制活性测试结果显示,化合物12、13具有显著的α-葡萄糖苷酶抑制活性,IC 50值分别为8.83±0.54、8.36±1.01μmol/L。酶动力学分析表明化合物12、13对α-葡萄糖苷酶的抑制类型为混合竞争性抑制,随后分子对接及分子动力学模拟结果表明化合物12、13对α-葡萄糖苷酶具有较强的亲和力,对接结合能分别为-10.08、-10.65 kcal/mol,化合物12、13具有显著的α-葡萄糖苷酶抑制活性,可能为水杨梅根乙酸乙酯部位发挥α-葡萄糖苷酶抑制活性的物质基础。This study aims to investigate the chemical components of Adina rubella and evaluate itsα-glucosidase inhibitory activity.The constituents from the ethyl acetate fraction of the root of A.rubella were separated and purified by chromatographic techniques including column chromatography of silica gel,Sephadex LH-20 and HPLC.Their structures were mainly elucidated by NMR and MS spectroscopic techniques.Twenty-five compounds were isolated and purified,and use modern wave spectroscopy methods to identify their structures as quinovic acid(1),quinovic acid 3-O-β-D-glucopyranoside(2),quinovic acid 3-O-β-D-fucopyranoside(3),quinovic acid 3-O-β-D-glucopyranosyl-28-O-β-D-glucopyranosyl ester(4),gongganoside C(5),gongganoside A(6),quinovic acid 3-O-β-D-fucopyranosyl-28-O-β-D-glucopyranosyl ester(7),quinovic acid 3-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranosyl ester(8),oleanolic acid(9),sinapic aldehyde(10),coniferaldehyde(11),3,5-di-O-caffeoylquinic methyl ester(12),3,4-di-O-caffeoylquinic methyl ester(13),methyl 4,5-di-caffeoyl-quinate(14),grandifloroside(15),undulatoside A(16),5,7-dihydroxy-2-methylchromone-7-O-β-D-apiosyl-(1→6)-O-β-D-glucoside(17),loganin(18),loganic acid(19),sitosterol(20),6′-O-acetyl-β-daucosterol(21),daucosterol(22),syringaldehyde(23),3,4,5-trimethoxyphenyl-1-O-β-D-apiofuranosyl-(1′′→6′)-O-β-D-glucopyranoside(24),lucidol(25).Among which compounds 2-8,10-14,16,17,19,21,23-25 were isolated from A.rubella for the first time.The results ofα-glucosidase inhibition activities showed that compounds 12 and 13 exhibited significant inhibitory activities againstα-glucosidase,with IC 50 values of 8.83±0.54,8.36±1.01μmol/L,respectively.Enzyme kinetic analysis showed that the type of inhibition ofα-glucosidase by compounds 12 and 13 was mixed competitive inhibition,followed by molecular docking and molecular dynamics simulation results showed that compounds 12 and 13 have superior binding capacities withα-glucosidase(binding energy:-10.08 and-10.65 kcal/mol).Compounds 12 and 13 sho
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...