检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭梦涛 牛保宁[1] 杨茸[1] GUO Mengtao;NIU Baoning;YANG Rong(College of Computer Science and Technology,Taiyuan University of Technology,Jinzhong 030600,China)
机构地区:[1]太原理工大学计算机科学与技术学院(大数据学院),山西晋中030600
出 处:《计算机工程与应用》2024年第17期243-251,共9页Computer Engineering and Applications
基 金:国家自然科学基金(62072326,61572345);山西省基础研究计划项目(202203021212282)。
摘 要:查询作为数据库系统中最重要的功能之一,它的执行效率直接决定系统的性能。并行场景下,查询交互(query interaction,QI)本质上表现为操作间的相互作用,是准确选择查询执行计划的关键。现有在操作粒度上度量QI的模型未能描述交互的动态性,只提取操作特征来反映QI,难以为并行场景下的执行计划选择提供准确的QI度量。为此,在QI的表示上,提出查询组合异构图,以操作为节点,操作间的交互关系为边,实现动态、操作粒度、多交互类型的QI表示;在QI特征提取上,提出多边类型权重计算(multi-edge type weight calculation,MTWC)模型用于计算边权重,并将其作为关系特征,体现交互的强弱程度;在执行计划的选择上,提出一种基于关系图注意力网络(relational graph attention network,R-GAT)的查询组合异构图分类模型(query-mix heterogeneous graph classifica-tion,QHGC),为并行查询选择执行计划。在PostgreSQL上的实验表明,QHGC为查询选择执行计划的准确率达90.4%,平均准确率比查询优化器提高48.2个百分点,比现有最先进的模型PSG提高6.9个百分点。As one of the most important functions in database systems,the execution efficiency of queries directly deter-mines the performance of the system.In parallel scenarios,query interaction(QI)essentially represents the interaction between operations,which is the key to accurately selecting a query execution plan.Existing models that measure QI at the operational granularity fail to describe the dynamics of interactions and only extract operational features to reflect QI,making it difficult to provide accurate QI measures for selecting execution plans in parallel scenarios.To this end,for the representation of QI,a query mix heterogeneous graph is proposed,with each operation as a node and each interaction type between two operations as an edge,to achieve a dynamic,operationally granular,and multi-interaction type represen-tation of QI;for the feature extraction of QI,the multi-edge type weight calculation(MTWC)model is proposed to calcu-late the edge weight,which is used as the relationship feature to reflect the strength of interactions;for the selection of execution plans,query-mix heterogeneous graph classification(QHGC)model based on relational graph attention net-work(R-GAT)is proposed to select an execution plan for parallel queries.Experiments on PostgreSQL show that QHGC selects execution plans for queries with an accuracy of 90.4%,an average accuracy improvement of 48.2 percentage points over the query optimizer and 6.9 percentage points over the existing state-of-the-art model PSG.
关 键 词:查询交互 操作级 多边类型权重计算(MTWC) 执行计划 关系图注意力网络(R-GAT)
分 类 号:TP392[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49