检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李炳萱 蒲成毅 Li Bingxuan;Pu Chengyi(School of Insurance,Central University of Finance and Economics,Beijing 102206,China)
出 处:《黑龙江科学》2024年第16期63-67,共5页Heilongjiang Science
基 金:科技创新2030“新一代人工智能”重大课题“不确定环境下农业大灾风险转移”(2022ZD0119504)。
摘 要:随着国家整体防灾减灾能力的提升,洪涝灾害损失呈逐年波动下降趋势,但单次灾害损失波动幅度巨大,在遭遇农业大灾风险时,保险业承担能力有限。财政补贴与保险费率厘定需基于预期损失的精准评估,而基于传统灾害损失的评估精度较低,运用风险序贯性链式结构理论,结合机器学习提高损失评估精度。以河北省玉米洪涝损失评估为例,检验发现,以决策树、BP神经网络、XGBoost回归模型预测区域降水量表征的风险分级函数对SVM模型加以改进,显著提高了灾害损失评估模型精度,而随着国家防灾减灾整体能力的提升,灾害损失呈现波动下降趋势。With the improvement of China’s overall disaster prevention and mitigation capacity,the loss of flood disaster fluctuates year by year,but the fluctuation range of single disaster loss is huge,and the insurance industry has limited ability to bear the risk of agricultural catastrophe.The determination of financial subsidies and insurance rates requires accurate assessment based on expected losses,which is usually based on traditional disaster losses.The theory of risk sequential chain structure and machine learning are used to improve the accuracy of loss assessment.Through taking the evaluation of corn flood loss in Hebei Province as an example,it is found that the decision tree,BP neural network and XGBoost regression model are used to predict the risk classification function of regional precipitation,and the SVM model is improved,which significantly improves the accuracy of disaster loss assessment model.Moreover,with the improvement of the overall ability of national disaster prevention and mitigation,disaster losses show a downward trend.
关 键 词:洪涝灾害 损失评估模型 降水量预测 支持向量机(SVM) 风险分级
分 类 号:X43[环境科学与工程—灾害防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7