检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙嘉泽 SUN Jiaze(College of Mechanical Engineering and Automation,Dalian Polytechnic University,Dalian,Liaoning 116038,China)
机构地区:[1]大连工业大学机械工程与自动化学院,辽宁大连116038
出 处:《自动化应用》2024年第15期38-41,44,共5页Automation Application
摘 要:在机械臂的运动过程中,各部件之间的摩擦、碰撞以及结构上的共振效应产生了不同频率和幅度的振动,同时振动通过机械臂的结构传递到外部,进而形成噪声。为此,提出基于改进小波包变换的机械臂振动信号噪声自动去除研究。采集机械臂振动信号作为分析的基础数据,并利用小波包变换对机械臂振动信号进行分解,得到不同频率范围内的有用信号和噪声信号。在分解的基础上,结合机械臂振动信号的特点,基于改进小波包变换确定去噪阈值函数,结合数学形态学滤波技术,精确识别并自动去除振动信号中的噪声成分。结果表明,研究方法有效消除了机械臂振动信号中的噪声,能够得到机械臂中更纯净的信号,具有实际应用价值。During the movement of a robotic arm,vibrations of different frequencies and amplitudes are generated due to friction,collision,and structural resonance effects between various components.At the same time,vibrations are transmitted to the outside through the structure of the robotic arm,resulting in noise.In response to the above phenomenon,a study on automatic noise removal of robotic arm vibration signals based on improved wavelet packet transform is proposed.Collect the vibration signals of the robotic arm as the basic data for analysis,and use wavelet packet transform to decompose the vibration signals of the robotic arm,obtaining useful signals and noise signals in different frequency ranges.On the basis of decomposition,combined with the characteristics of the vibration signal of the robotic arm,an improved wavelet packet transform is used to determine the denoising threshold function.Combined with mathematical morphology filtering technology,the noise components in the vibration signal are accurately identified and automatically removed.The results show that the research method effectively eliminates noise in the vibration signal of the robotic arm,and can obtain a purer signal in the robotic arm,which has practical application value.
分 类 号:TH137[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49