检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乔世超 王轶男 吕佳阳 陈衡[1] 刘涛 徐钢[1] 翟融融[1] QIAO Shichao;WANG Yi’nan;LYU Jiayang;CHEN Heng;LIU Tao;XU Gang;ZHAI Rongrong(North China Electric Power University,Beijing 102206,China;Beijing Guodiantong Network Technology Co.Ltd.,Beijing 100086,China)
机构地区:[1]华北电力大学,北京102206 [2]北京国电通网络技术有限公司,北京100086
出 处:《煤炭科学技术》2024年第S01期332-340,共9页Coal Science and Technology
基 金:国家自然科学基金面上资助项目(52276006)。
摘 要:随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。With the country vigorously promoting structural reform on the supply side of energy,the installed capacity of new energy sources has been rising and competition in the power market has become increasingly fierce.On the other hand,the complexity and volatil-ity of the global coal market has led to a rise in the cost of power generation enterprises using coal as their energy source.Coal heat value is one of the most important evaluation criteria for coal quality and is also the most important basis for coal procurement.Accurate predic-tion of coal heat value can effectively control power plant operation and procurement costs.In order to achieve efficient prediction of the heat value of coal,the Pearson coefficients were used to select the characteristics of the variables of interest,the DBSCAN algorithm was used to de-noise 1733 assay data of a power plant's own coal plant in the past two years,and spectral clustering(SC)analysis was per-formed on the de-noised data.The classified subsample sets were then used to build prediction models using the extreme gradient boosting(XGBoost)algorithm and compared with Ordinary Least Squares(OLS)and support vector machines(SVM)models.The performance of the models was compared with that of OLS and SVM.The results show that the accuracy of the XGBoost-based coal-fired heat value pre-diction model for power stations is significantly better than that of the other algorithms,and the generalization ability is stronger.The pre-diction model can further improve the refinement level of the model and provide a reliable and efficient method for coal-fired power sta-tion heat value prediction.
关 键 词:低位发热量 机器学习 谱聚类 极致梯度提升(XGBoost) 软测量
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.80.77