检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Chinese Journal of Polymer Science》2024年第9期1333-1340,I0007,共9页高分子科学(英文版)
基 金:supported by the National Natural Science Foundation of China(No.21973002).
摘 要:The liquid-liquid phase separation of biopolymers in living cells contains multiple interactions and occurs in a dynamic environment.Resolving the regulation mechanism is still a challenge.In this work,we designed a series of peptides(XXLY)_(6)SSSGSS and studied their complexation and coacervation behavior with single-stranded oligonucleotides.The“X”and“Y”are varied to combine known amounts of charged and non-charged amino acids,together with the introduction of secondary structures and pH responsiveness.Results show that the electrostatic interaction,which is described as charge density,controls both the strength of complexation and the degree of chain relaxation,and thus determines the growth and size of the coacervates.The hydrophobic interaction is prominent when the charges are neutralized.Interestingly,the secondary structures of peptides exhibit profound effect on the morphology of the phases,such as solid phase to liquid phase transition.Our study gains insight into the phase separation under physiological conditions.It is also helpful to create coacervates with desirable structures and functions.
关 键 词:Polyelectrolyte complex COACERVATE PEPTIDES Secondary structure Electrostatic interaction
分 类 号:TQ317[化学工程—高聚物工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33