机构地区:[1]中南大学交通运输工程学院轨道交通安全教育部重点实验室,湖南长沙410075 [2]中南大学轨道交通安全关键技术国际合作联合实验室,湖南长沙410075 [3]湖南理工学院激光磨削复合智能制造与服役性能优化重点实验室,湖南岳阳414006 [4]中国空气动力研究与发展中心气动噪声控制重点实验室,四川绵阳621000
出 处:《铁道科学与工程学报》2024年第8期3061-3071,共11页Journal of Railway Science and Engineering
基 金:气动噪声控制重点实验室研究基金资助项目(2101ANCL20210302);中国国家铁路集团有限公司科技研究开发计划课题(P2019J008);超导电动磁浮关键技术研究与工程样车研制项目噪声研究气动部分;国家自然科学基金资助项目(52272363);中南大学研究生科研创新项目(512340003)。
摘 要:受限于风洞尺寸和仿真计算规模,研究高速列车气动噪声问题时,通常采用缩比模型。然而,由于受电弓区域的流场结构复杂,缩比模型的使用会导致雷诺数减小,从而改变流场结构,进而影响气动噪声特性。为探明模型尺度对气动噪声声源分布和辐射噪声强度的影响,结合大涡模拟和Ffowcs Williams-Hawkings积分方程,研究高速列车受电弓区域不同缩比尺度下的气动激扰特征、表面偶极子声能和远场辐射噪声声压级。研究结果表明:随着模型尺寸减小,流动主尺度从受电弓上部迁移到受电弓下部。流场变化导致声场主发声源随之迁移,受电弓区域的整体辐射噪声呈下降趋势。1/4、1/8、1/16、1/25和1/50比例的缩比模型辐射噪声分别为97.40,95.39,94.30,92.48和88.1 dB(A)。其中,1/4比例的缩比模型受电弓上部声源声功率占比为32%,受电弓区域整体声源谱型存在2个峰值,峰值频率由弓头和上臂杆产生;而在1/50缩比模型中受电弓下部声源声功率占比为87%,受电弓区域整体声源谱型呈现宽频特征,与受电弓腔谱型特征一致。研究结果揭示模型缩小导致的误差是非线性的,进行缩比模型试验时,需要根据具体的缩比尺度对声源特征进行相应的修正,以便更准确地反映实际情况。研究结果可为缩比模型试验仿真以及未来高速列车的低气动噪声设计提供参考依据。Due to limitations of both the limited size of the acoustic wind tunnel and the computational resources,the study of aerodynamic noise in high-speed trains typically employs scaled models.However,scaled models result in reduced Reynolds numbers,altering flow field structures and affecting radiated noise.To delve deeper into the effects of scaling on aerodynamic noise in the pantograph region,this study employed scaled models at ratios of 1/4,1/8,1/16,1/25,and 1/50,using Large Eddy Simulation(LES)and the Ffowcs Williams-Hawkings(FW-H)integral equation.The aerodynamic disturbance characteristics,surface dipole sound energy,and far-field radiation sound pressure levels in the overhead pantograph area of high-speed trains were investigated for different scale models.The research found that the transition in the flow field leads to the migration of sound sources within the pantograph,subsequently influencing its radiated noise characteristics.Research findings reveal that as model sizes decrease,the primary flow scale in the pantograph region shifts from the upper part to the lower part.This transition in the flow field leads to the migration of sound sources within the pantograph,subsequently influencing its radiated noise characteristics.As the size of the pantograph model decreases,radiated noise decreases.The sound pressure levels of the scaled models at 1/4,1/8,1/16,1/25,and 1/50 ratios are 97.40 dB(A),95.39 dB(A),94.30 dB(A),92.48 dB(A),and 88.1 dB(A),respectively.In the 1/4 scale model,the upper pantograph source contributes to 32%of the total sound power,and the overall acoustic spectrum in the pantograph exhibits two peaks with peak frequencies generated by the pantograph head and upper arm.In the 1/50 scaled model,the lower pantograph source contributes to 87%of the total sound power,and the overall acoustic spectrum in the pantograph exhibits a broad frequency characteristic,consistent with the pantograph cavity.The research findings reveal that the errors resulting from model scaling-down are non-linear.Th
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...