检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李丹[1] 罗娇娇 孙光帆 唐建 黄烽云 LI Dan;LUO Jiaojiao;SUN Guangfan;TANG Jian;HUANG Fengyun(College of Electrical Engineering and New Energy,China Three Gorges University,Yichang 443002,China;State Grid Copper Beam Power Supply Company,Chongqing Municipality 404100,China;Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station,China Three Gorges University,Yichang 443002,China;Hubei Provincial Collaborative Innovation Center for New Energy Microgrid,China Three Gorges University,Yichang 443002,China)
机构地区:[1]三峡大学电气与新能源学院,湖北宜昌443002 [2]国家电网铜梁供电公司,重庆404100 [3]梯级水电站运行与控制湖北省重点实验室(三峡大学),湖北宜昌443002 [4]新能源微电网湖北省协同创新中心(三峡大学),湖北宜昌443002
出 处:《三峡大学学报(自然科学版)》2024年第5期68-75,共8页Journal of China Three Gorges University:Natural Sciences
基 金:国家自然科学基金项目(51807109)。
摘 要:考虑到输入信息和预测模型的不确定性对负荷预测结果的影响,本文提出一种基于条件变分自编码器和贝叶斯神经网络的短期电力负荷概率预测方法.通过条件变分自编码器生成指定天气因素预测值和日历特征条件下实际天气因素可能的多个随机样本,以模拟天气预测信息的不确定性;构建GRU-S2S贝叶斯神经网络学习模型参数的分布特征,以反映预测模型的不确定性,并结合MC dropout技术获得多个可能的负荷预测值;遍历天气因素全部模拟样本,将预测模型输出的负荷预测值构成集合,并通过核密度估计获得预测时段内各时刻预测负荷服从的概率分布.实际算例结果表明,该方法在短期负荷概率预测中具有更高的分位数预测精度和更可靠稳定的区间预测结果.Considering the influence of the uncertainty of inputs information and prediction model on the results of load prediction,a novel method of probabilistic short-term load forecasting based on conditional variational autoencoder and Bayesian neural network is proposed in this paper.Firstly,a conditional variational autoencoder is adopted to generate the multiple possible samples of actual weather factors under the specified calendar and prediction weather factors to simulate the uncertainty of weather prediction values.By learning the probabilistic distribution characteristics of model parameters,a GRU-S2S Bayesian neural network is built to characterize the uncertainty of the prediction model.Therefore,The values of multiple possible load prediction using the MC dropout technique are output.Traversing all the simulated samples of weather factors,the values of possible load prediction at each time point in the forecast period are output and the corresponding set is formed.Finally,the probability distribution of the prediction load at each forecasting time point is obtained by kernel density estimation.The practical examples show that the proposed method has higher accuracy of quantile prediction and more reliable and stable results of interval prediction in probabilistic short-term load prediction.
关 键 词:负荷概率预测 门控循环单元 贝叶斯神经网络 条件变分自编码器
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7