检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤雪扬 蔡小培[1] 杨飞 侯博文[1] TANG Xueyang;CAI Xiaopei;YANG Fei;HOU Bowen(Beijing Jiaotong University,Beijing 100044,China;Infrastructure Inspection Research Institute,CARS,Beijing 100081,China)
机构地区:[1]北京交通大学,北京100044 [2]中国铁道科学研究院集团有限公司基础设施检测研究所,北京100081
出 处:《铁道建筑》2024年第8期7-13,共7页Railway Engineering
基 金:中国国家铁路集团有限公司科技研究开发计划(N2023G083)。
摘 要:轨道不平顺是影响高速铁路车辆响应的主要因素。本文建立了车辆-道岔-下部基础刚柔耦合动力学模型,基于贝叶斯优化的双向长短时神经网络模型(BO-BiLSTM),分别从机理建模和数据驱动两个方面,揭示了高速道岔不平顺与车辆响应的映射关系。研究结果表明:转辙器区和辙叉区短波长(3~5 m)的高低不平顺和水平不平顺会显著影响列车过岔时轮轨的垂向作用,造成轮轨垂向力和轮重减载率的激增,列车有较大的脱轨安全风险。利用BO-BiLSTM模型,对于高低和水平不平顺,可实现对波长2 m以上不平顺的准确估计;对于轨向和轨距不平顺,可实现波长3 m以上不平顺的准确估计;对于三角坑不平顺,可实现波长1.5 m以上不平顺的准确估计。Track irregularity is the main factor affecting the response of high speed railway vehicles.In this paper,a vehicle-turnout-lower base rigid-flexible coupling dynamics model and a bidirectional short-time and long-time neural network model based on Bayesian optimisation(BO-BiLSTM)was established to reveal the mapping relationship between high speed railway turnout irregularity and vehicle response from the aspects of mechanistic modelling and data-driven,respectively.The results show that the short-wavelength(3~5 m)longitudinal levels and cross level in the turnout can significantly affect the wheel-rail vertical action when the train crosses the turnout,resulting in the surge of wheel-rail vertical force and wheel-weight reduction rate,and the train has a greater risk of derailment safety.The BO-BiLSTM model can achieve accurate estimation of irregularities above 2 m in wavelength for longitudinal levels,above 3 m in wavelength for alignments and gauge irregularities,and above 1.5 m in wavelength for twist.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.93.1