检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王婷 孙毅[1] WANG Ting;SUN Yi(College of Mathematics and System Science,Xinjiang University,Urumqi,830046,China)
机构地区:[1]新疆大学数学与系统科学学院,乌鲁木齐830039
出 处:《应用概率统计》2024年第4期625-643,共19页Chinese Journal of Applied Probability and Statistics
基 金:国家自然科学基金项目(批准号:11726629,11726630,11701491);东北师范大学应用统计教育部重点实验室开放课题(批准号:130028906)资助.
摘 要:在观察性研究中,混杂现象往往会导致因果作用的估计出现偏差,从而影响因果关系推断结论的准确性.为了评估出真实的因果作用,本文利用因果图结构,研究关于因果作用无混杂与可压缩的问题.本文引入了线性排序集与条件化稳定的概念并研究了其性质.在此基础上,结合c-可去点,可反转边的定义与性质,提出无混杂与可压缩的若干充分条件.In observational studies,the phenomenon of confounding bias often leads to errors in the evaluation of causal effects,which in turn affects the accuracy of conclusions in causal inference.This paper details the properties of these two concepts of non-confounding and collapsibility in evaluating the true causal effects and proposes several conditions for non-confounding and collapsibility with knowledge of the constructed causal diagrams.In order to give characterizations for these conditions,we introduce the concepts of linearly ordered set and stability under conditioning and studies on certain properties.Based on the above arguments,we finally present sufficient conditions for non-confounding and collapsibility,respectively.
分 类 号:O211[理学—概率论与数理统计] O212[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30