检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王震 王新春[1] 杨培宏[1] 费鹏宇 郑学奎 WANG Zhen;WANG Xinchun;YANG Peihong;FEI Pengyu;ZHENG Xuekui(School of Automation and Electrical Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China)
机构地区:[1]内蒙古科技大学自动化与电气工程学院,内蒙古包头014010
出 处:《现代电子技术》2024年第18期149-155,共7页Modern Electronics Technique
基 金:国家重点研发计划项目(2023YFB3506800)。
摘 要:针对传统斑马优化算法在求解复杂优化问题时精度低、收敛速度慢和易陷入局部最优的不足,提出一种多策略融合的改进斑马优化算法(IZOA)。首先,为解决斑马个体初始位置分布不均匀的问题,引入混沌映射来增加探索过程的种群多样性;其次,受自适应权重和黄金正弦算法思想启发,提出一种基于自适应递减权重和黄金正弦更新机制的位置更新策略,用于改进斑马算法的局部寻优与全局探索能力;然后,进行标准测试函数实验,验证了IZOA能够有效提升寻优精度和收敛速度;最后,将K近邻分类器作为待优化目标,选取UCI库的12个标准数据集进行特征选择实验,并利用改进后的算法在特征选择模型中进行最优特征子集搜寻。实验结果表明,相比传统算法,所提算法的平均分类准确率提升4.47%,平均适应度值降低2.5%,验证了该算法在特征选择领域的优越性。In allusion to the shortcomings of traditional zebra optimization algorithm(ZOA)in solving complex optimization problems,such as low accuracy,slow convergence speed,and susceptibility to local optima,an improved zebra optimization algorithm(IZOA)based on multi-strategies fusion is proposed.In order to improve the uneven initial position distribution of zebra individuals,chaos mapping is introduced to increase the population diversity during the exploration process.Inspired by the ideas of adaptive weighting and the golden sine algorithm(Gold-SA),a position update strategy based on adaptive decending weight and goldensine update mechanism is proposed to improve the local optimization and global exploration capabilities of the zebra algorithm.The experiment of standard test function is conducted to verify that IZOA can effectively improve the optimization accuracy and convergence speed.With K-nearest neighbors(KNN)as the target to be optimized,12 standard data sets of UCI database are selected for feature selection experiments,and the improved algorithm is used to search the optimal feature subset in the feature selection model.The experimental results demonstrate that,in comparison with the original algorithm,the average classification accuracy is improved by 4.47%,and the average fitness value is reduced by 2.5%,validating the superiority of the proposed algorithm in the field of feature selection.
关 键 词:斑马优化算法 多策略融合 特征选择 混沌映射 自适应权重 黄金正弦算法 K近邻分类器
分 类 号:TN911-34[电子电信—通信与信息系统] TP301.6[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.37.16