检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖振久[1] 张杰浩 林渤翰 Xiao Zhenjiu;Zhang Jiehao;Lin Bohan(School of Software,Liaoning University of Engineering and Technology,Huludao,Liaoning 125105,China)
机构地区:[1]辽宁工程技术大学软件学院,辽宁葫芦岛125105
出 处:《光电工程》2024年第6期46-58,共13页Opto-Electronic Engineering
基 金:辽宁省高等学校基本科研项目(LJKMZ20220699);辽宁工程技术大学学科创新团队项目(LNTU20TD-23)。
摘 要:针对遥感图像中小目标多、排列密集导致的漏检问题,提出一种特征协同与细粒度感知的遥感图像小目标检测算法。首先,构造精细特征协同策略,通过智能调整卷积核参数,优化了特征间的交互和整合过程;通过精确控制信息流,实现从粗糙到精细的渐进式特征精化。在此基础上,本文设计一个细粒度感知模块,将感知注意力与移动反向卷积结合形成一个增强型检测头,显著增强网络对于极小尺寸物体的感知能力。最后,为了提升模型训练的效率,采用MPDIoU和NWD作为回归损失函数,解决位置偏差,加快模型收敛。在DOTA1.0数据集和DOTA1.5数据集上的实验结果表明,改进后算法相比于基准方法,平均精度分别提高7.4%和6.1%,相较于其他算法具有明显优势,显著改善遥感图像中小目标的漏检情况。Addressing the challenge of missed detection caused by many small targets and dense arrangement in remote sensing images,this study introduces a small target detection algorithm for remote sensing applications,leveraging a combination of feature synergy and micro-perception strategies.Initially,we propose a refined feature synergistic fusion strategy that optimizes the interaction and integration of features across different scales by intelligently adjusting the parameters of convolution kernels.This strategy facilitates progressive refinement of features from coarse to fine granularity.Building upon this foundation,a micro-perception unit is developed in this paper,incorporating perceptual attention mechanisms with moving inverse convolution to form an advanced detection head.This innovative approach substantially boosts the network's capability to detect very small objects.Furthermore,to augment the training efficiency of the model,we employ MPDIoU and NWD as regression loss functions,mitigating positional bias issues and expediting model convergence.Experimental evaluations on the DOTA1.0 dataset and DOTA1.5 dataset reveal that our algorithm achieves a substantial improvement in mean Average Precision(mAP)by 7.4%and 6.1%over the baseline method,which has obvious advantages over other algorithms.The results underscore the algorithm's efficacy in significantly reducing the incidence of missed detections of small targets within remote sensing imagery.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15