一种基于特征知识蒸馏的轻量级图像去噪模型  

A lightweight image denoising model based on feature knowledge distillation

在线阅读下载全文

作  者:沈育 张鼎逆[1] SHEN Yu;ZHANG Dingni(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201418,China)

机构地区:[1]上海师范大学信息与机电工程学院,上海201418

出  处:《上海师范大学学报(自然科学版中英文)》2024年第4期489-495,共7页Journal of Shanghai Normal University(Natural Sciences)

摘  要:为了构建适用于小型设备的轻量级图像去噪模型,提出了一种基于特征知识蒸馏的新方法.该方法通过学习教师模型的特征图,捕捉深层知识,从而构建轻量级去噪模型,其参数量仅为教师模型的五分之一.实验结果验证了蒸馏算法的有效性,在不同噪声水平及数据集下,都显著提升了学生模型的去噪性能,为轻量级图像去噪模型的构建提供了一种新的方向.To construct a lightweight image denoising model suitable for small-scale devices,a novel approach based on feature knowledge distillation was proposed in this paper.Deep-seated knowledge within a teacher model was captured through learning from its feature maps by this method,resulting in the creation of a lightweight denoising model with parameters only one-fifth the size of the teacher model.Experimental results validated the effectiveness of the distillation algorithm,demonstrating significant improvements in denoising performance for the student model across varying noise levels and datasets,which introduced a promising avenue for constructing lightweight image denoising models.

关 键 词:知识蒸馏 特征学习 卷积神经网络 图像去噪 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象