以神经网络模型为载体的鲁棒隐写方法  

Robust steganography for neural network models

在线阅读下载全文

作  者:杨彤彤 杨紫云 王子驰 Yang Tongtong;Yang Ziyun;Wang Zichi(School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)

机构地区:[1]上海大学通信与信息工程学院,上海200444

出  处:《电子测量技术》2024年第9期98-104,共7页Electronic Measurement Technology

基  金:国家自然科学基金(62376148);上海市教育发展基金会和上海市教育委员会“晨光计划”项目(22CGA46)资助。

摘  要:神经网络已广泛应用于各个领域,神经网络模型隐写是近年来学术界新兴的研究方向。嵌入容量与鲁棒性是神经网络模型隐写的重要指标,但难以同时兼顾。为此,本文提出了一种以神经网络模型为载体的鲁棒模型隐写方法。不明显降低模型原始任务性能的情况下,发送者在训练过程中将秘密信息嵌入到神经网络中,而不是在神经网络训练完成后通过修改网络参数嵌入。接收者使用解码网络提取秘密信息,解码网络的参数使用唯一的嵌入密钥生成,因此无需秘密地向接收者传送解码网络。此外,本文还引入了RS码,提高数据提取的鲁棒性。实验结果表明,所提出的模型隐写方法将嵌入容量增大了66.6%的同时增强了鲁棒性。Neural networks have been extensively utilized in various fields,steganography for neural network is a research emerging direction in academia in recent years.Embedding capacity and robustness are important indicators for steganography.But balancing embedding capacity and robustness is challenging.This paper proposes a robust steganography for neural network models.Embedding secret data into neural network without visibly reducing the performance of the original task.This is achieved by embedding secret data during the training process instead of modifying the network parameters after training.Receivers can obtain the secret data from data decoding networks,the parameters of data decoding networks are generated using the embedding keys.In this way,it is unnecessary to transmit the decoding networks secretly.Additionally,introducing reed-solomon codes to improve data extraction robustness.Experimental results reveal that the robust steganography for neural models improves robustness while maintaining superior embedding capacity.

关 键 词:隐写 神经网络模型 鲁棒性 RS码 嵌入容量 

分 类 号:TN918.91[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象