顾及非视距与系统误差的UWB质量控制及其与GNSS/INS的组合定位  

UWB quality control and its integrated positioning with GNSS/INS considering NLOS and system errors

在线阅读下载全文

作  者:吴鹏博 潘树国[1] 高旺 刘宏 贾丰硕 Wu Pengbo;Pan Shuguo;Gao Wang;Liu Hong;Jia fengshuo(School of Instrument Science and Engineering,Southeast University,Nanjing 210096,China)

机构地区:[1]东南大学仪器科学与工程学院,南京210096

出  处:《仪器仪表学报》2024年第5期51-60,共10页Chinese Journal of Scientific Instrument

基  金:国家重点研发计划项目(2021YFB3900804)资助。

摘  要:为提高GNSS拒止环境下定位系统的定位精度与稳定性,本文提出了顾及非视距与系统误差的UWB质量控制方法,并实现了其与GNSS/INS的组合定位。首先,综合考虑系统的稳定性与定位精度,以GNSS/INS松组合+UWB/INS紧组合的方式构建集中式卡尔曼滤波;在此基础上,针对UWB中存在的NLOS误差,设计了基于滑动窗口与滤波新息向量的两步NLOS误差识别方法;最后,采用基于滤波估计的方法实时补偿UWB中的系统误差。实验结果表明,本文提出的UWB质量控制方法能够有效减小NLOS与系统误差的影响,GNSS/UWB/INS组合算法水平定位误差在5cm以内。在UWB布局合理的情况下,该方法无需依赖过多基站也可实现较高的定位精度。To improve the positioning accuracy and stability of the positioning system in GNSS-denied environments,the paper proposes a UWB quality control method considering NLOS and system errors,and achieves its integrated positioning with GNSS/INS.Firstly,considering the stability and accuracy of the positioning system,a centralized Kalman filter is constructed using loose combination of GNSS/INS and a tight combination of UWB/INS.Baesd on this,aiming at the NLOS error existing in UWB,a two-step NLOS error identification method based on sliding window and innovation vector of the filter is designed.Finally,a method based on filter estimation is used to compensate the system error in UWB in real time.The experiment results show that the proposed UWB quality control method can effectively reduce the impact of NLOS and system errors,and the horizontal positioning error of the GNSS/UWB/INS integrated algorithm is within 5cm.With a reasonable UWB layout,this method can achieve high positioning accuracy without relying on an excessive number of base stations.

关 键 词:GNSS/UWB/INS组合导航 扩展卡尔曼滤波 质量控制 NLOS误差 

分 类 号:TH-3[机械工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象