检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋凯[1] 周建江[1] 吕瑞广 李晓航 JIANG Kai;ZHOU Jianjiang;LÜRuiguang;LI Xiaohang(The Key Laboratory of Radar Imaging and Microwave Photonics,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 211106,China)
机构地区:[1]南京航空航天大学雷达成像与微波光子技术教育部重点实验室,江苏南京211106
出 处:《现代雷达》2024年第8期47-54,共8页Modern Radar
摘 要:为提高车载毫米波雷达多目标跟踪精度指标,提升道路车辆行驶安全性,文中在交互多模型无迹卡尔曼滤波(IMM-UKF)和联合概率数据关联(JPDA)融合的算法基础上,针对车辆运动状态突变处UKF鲁棒性差、滤波精度低的问题,提出了一种基于改进强跟踪UKF(ISTUKF)的IMM-JPDA-ISTUKF算法。通过模拟道路场景搭建的仿真环境对算法性能进行了验证,且为证明该算法在实际道路工况下跟踪精度的提升,还进行了雷达道路测试,通过雷达在道路上获取的车辆数据进一步验证了该算法的有效性。结果表明,该算法在目标车辆运动状态发生变化时的距离跟踪精度和速度跟踪精度方面均得到了提高。In order to improve the multi-target tracking accuracy index of vehicle-mounted millimeter-wave radar and enhance the driving safety of road vehicles,based on the fusion of interactive multi-model unscented Kalman filter(IMM-UKF)and joint probabilistic data association(JPDA),according to improved strong tracking UKF(ISTUKF)an IMM-JPDA-ISTUKF algorithm is proposed in this paper to solve the problems of poor robustness and low filtering accuracy of UKF at abrupt changes in vehicle motion state.The performance of the algorithm is verified by simulating road scenes and building a simulation environment.In order to prove the improvement of the tracking accuracy of the algorithm under actual road conditions,the radar road test is also carried out,and the effectiveness of the algorithm is further verified by the vehicle data obtained by the radar on the road.The results show that the algorithm improves both distance tracking accuracy and speed tracking accuracy when the motion states of the target vehicle are changeing.
关 键 词:多目标跟踪 无迹卡尔曼滤波 强跟踪滤波 交互多模型 车载毫米波雷达
分 类 号:TN9571.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.100.195