检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋燕[1] 王勇[1] SONG Yan;WANG Yong(Department of Control Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093)
机构地区:[1]上海理工大学控制科学与工程系,上海200093
出 处:《自动化学报》2024年第9期1804-1817,共14页Acta Automatica Sinica
基 金:国家自然科学基金(62073223);上海市自然科学基金(22ZR1443400);航天飞行动力学技术国防科技重点实验室开放课题(6142210200304)资助。
摘 要:针对传统的胶囊网络(Capsule network,CapsNet)特征提取不充分的问题,提出一种图像分类的多阶段注意力胶囊网络模型.首先,在卷积层对低层特征和高层特征分别采用注意力(Spatial attention,SA)和通道注意力(Channel attention,CA)来提取有效特征;然后,提出基于向量的注意力(Vector attention,VA)机制作用于动态路由层,增加对重要胶囊的关注,进而提高低层胶囊对高层胶囊预测的准确性;最后,在五个公共数据集上进行图像分类的对比实验.结果表明,所提出的CapsNet模型在分类精度和鲁棒性上优于其他胶囊网络模型,在仿射变换图像重构方面也表现良好.Aiming to address the inadequate feature extraction problems in the traditional capsule networks(CapsNets),a multi-stage attention-based CapsNet model is proposed in this paper for image classification.Firstly,spatial attention(SA)and channel attention(CA)are used to extract effective features in the convolutional layer from low-level features and high-level features,respectively.Then,attention mechanism based on vector direction is introduced into the dynamic routing layer to enhance the focus on the important capsules,thereby improving the prediction accuracy of the low-layer capsules to the high-layer capsules.Finally,the comparison experiments on image classification are carried out on five public datasets.The experimental results show that the proposed CapsNet outperforms other CapsNets at the classification accuracy and the robustness,and its shows a good performance on the image reconstruction for affine images.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117