检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牛强
机构地区:[1]中移(苏州)软件技术有限公司
出 处:《江苏通信》2024年第4期107-113,共7页Jiangsu Communication
摘 要:针对线性判别分析(LDA)算法对异常值较为敏感的特点,为了提高算法的鲁棒性,提出了鲁棒性的联结图嵌入与稀疏回归的LDA算法。该算法首先组合图嵌入与基于L_(2,1)范数稀疏回归的目标函数,使得谱图向量和最优回归向量可同时学习得到,然后采用交替迭代优化的方法,经过一系列变换求出最优投影矩阵,最后将训练样本和测试样本投影到该低维子空间中,利用最近欧式距离分类器进行分类。由于将L_(2,1)范数作用于损失函数和正则化项上,能够使特征选择和子空间学习同时进行,增强了算法的鲁棒性,有效地提高了识别性能。在ORL和PIE人脸库上的实验结果表明,新算法具有较好的鉴别能力。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.35.81