检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾鑫[1] 先苏杰 王康 司鹏 吴志林[1] ZENG Xin;XIAN Sujie;WANG Kang;SI Peng;WU Zhilin(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China)
机构地区:[1]南京理工大学机械工程学院,江苏南京210094
出 处:《兵工学报》2024年第9期3297-3306,共10页Acta Armamentarii
摘 要:微机电系统(Micro-Electro-Mechanical System,MEMS)陀螺仪的随机误差限制了其测量精度。为了降低MEMS陀螺仪的随机误差,提出一种基于改进的经验模态分解(Empirical Mode Decomposition,EMD)和优化的自回归滑动平均(Autoregressive Moving Average,ARMA)模型的方法。该方法在传统EMD的基础上,结合Hausdorff距离和累积标准化模态均值以提取信号中的噪声和趋势项,对剩余信号进行ARMA建模和滤波。采用沙猫群优化算法优化建模的定阶过程,采用改进的自适应滤波补偿随机误差。试验结果表明:相较于传统EMD和传统ARMA方法,新方法在静态试验中得到的均方根误差分别降低52.5%和34.4%,在动态试验中得到的均方根误差分别降低50%和32.35%;新方法有效抑制了随机误差,提升了MEMS陀螺仪的使用精度。It is difficult to increase the measurement accuracy of micro-electro-mechanical system(MEMS)gyroscope due to random error.An error compensation method based on improved empirical modal decomposition(EMD)and an optimized autoregressive moving average(ARMA)model is proposed to lessen the random error of MEMS gyroscope.The proposed method is used to extract the noise and trend components from a signal based on Hausdorff distance,the mean of the accumulated standardized modes,and the conventional empirical mode decomposition.Then,ARMA modeling and filtering are applied to the remaining components.The ordering procedure of ARMA model is optimized using the sand cat swarm optimization algorithm.The improved adaptive filter is used to compensate the random error.The experimental results show that,compared to the traditional EMD and traditional ARMA model,the root mean square error obtained by the proposed method in static experiment is decreased by 52.5%and 34.4%and the root mean square error obtained by the proposed method in dynamic experiments is decreased by 50%and 32.35%,respectively.The proposed method might successfully reduce the random error and raise the measurement accuracy of MEMS gyroscope.
关 键 词:微机电系统 陀螺仪 改进经验模态分解 时间序列建模 HAUSDORFF距离 自适应滤波
分 类 号:V241.5[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7