应用于空中平台主动防御作战轨迹预测过程的状态估计方法研究  

Research on State Estimation Method Applied to Trajectory Prediction of Air Platforms Active Defense Operations

在线阅读下载全文

作  者:吕明远 吴震[1,2] 乔要宾 Lu Mingyuan;Wu Zhen;Qiao Yaobin(China Airborne Missile Academy,Luoyang 471009,China;National Key Laboratory of Air-based Information Perception and Fusion,Luoyang 471009,China)

机构地区:[1]中国空空导弹研究院,河南洛阳471009 [2]空基信息感知与融合全国重点实验室,河南洛阳471009

出  处:《航空兵器》2024年第4期41-48,共8页Aero Weaponry

摘  要:从主动防御的实际作战需求入手,分析轨迹预测不同方法的优缺点及使用场景,分析空中平台主动防御作战场景相较于目前主要研究的其他飞行器轨迹预测场景的区别,针对该场景下轨迹预测对象特殊的攻击意图和运动规律提出一种基于扩展卡尔曼滤波的状态估计方案。基于仿真软件模拟了攻击弹以比例导引攻击载机的过程,以满足比例导引系数不变的条件建立观测模型,采用扩展卡尔曼滤波为非线性的模型进行线性化仿真,观测到不同时刻攻击弹的运动状态,并以此进行短时间的轨迹预测。仿真结果表明,该模型在主动防御作战场景下能显著减小状态估计误差。Starting with the actual operational requirements of active defense,this paper analyzes the advantages,disadvantages,and usage scenarios of different trajectory prediction methods,also analyzes the differences between the active defense combat scenarios of air platforms and other aircraft trajectory prediction scenarios that are currently mainly studied.A state estimation scheme based on extended Kalman filtering is proposed for the special attack intent and motion law of the trajectory prediction object in this scenario.It simulates the process of the attack missile guided with proportional guidance law attacking aircraft based on simulation software,to establish an observation model under conditions of constant proportional guidance coefficient,and performs linearization simulation using Kalman filter nonlinear model.The motion states of the attack missile at different times are observed and the short-term trajectory prediction is performed.The simulation results show that the model can significantly reduce state estimation errors in the active defense combat scenario.

关 键 词:空空导弹 主动防御 三体对抗 轨迹预测 状态估计 扩展卡尔曼滤波 

分 类 号:TJ765.4[兵器科学与技术—武器系统与运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象