基于层次聚类和BILSTM的光伏短期功率预测模型  被引量:1

Photovoltaic Short-term Power Forecasting Model Based on Hierarchical Clustering&BILSTM

在线阅读下载全文

作  者:张晓珂 张辉 戴小然 贾梦麒 邓其军[1] 雷忠诚 ZHANG Xiaoke;ZHANG Hui;DAI Xiaoran;JIA Mengqi;DENG Qijun;LEI Zhongcheng(Electrical Engineering and Automation College,Wuhan University,Wuhan 430072,China;State Grid Anhui Electric Power Economic and Technology Research Institute,Hefei 230071,China)

机构地区:[1]武汉大学电气与自动化学院,湖北武汉430072 [2]国网安徽省电力有限公司经济技术研究院,安徽合肥230071

出  处:《智慧电力》2024年第9期41-48,共8页Smart Power

基  金:国家自然科学基金资助项目(62103308);南方电网公司科技项目(GDKJXM20210194)。

摘  要:为解决现有光伏功率预测方法存在效率低和非线性预测精度不高的问题,提出一种混合光伏功率预测模型。首先通过支持向量机(SVM)提取模块降低输入数据维度;然后利用平衡迭代规约和聚类(BIRCH)模块挖掘数据中的信息,划分特征库;最后根据光伏功率的波动特性,建立其对应的双向长短期记忆网络(BILSTM)预测模型。将提出的混合模型应用于欧洲中期天气预报中心(ECMWF)提供的真实数据集上进行预测,通过与8种主流的机器学习算法相比,该模型在测试数据集上的平均绝对误差(MAE)和均方误差(MSE)分别降低了4.3%~59.75%和35.65%~78.29%。此外,混合模型还具有良好的可解释性,使其在电力行业有广泛的应用前景。To tackle the challenges of inefficiency and inaccuracy in nonlinear photovoltaic power forecasting,a novel hybrid photovoltaic power forecasting model is introduced.Firstly,the input data dimensionality is reduced through the support vector machine(SVM)extraction module;Then,the balanced iterative reducing and clustering using hierarchies(BIRCH)clustering module is used to mine the information from the data and segment the feature library.Finally,a bi-directional long short-term memory network(bilstm)forecasting model is established according to the fluctuation characteristics of photovoltaic power output.When tested on real-world datasets from European Centre for Medium-Range Weather Forecasts(ECMWF),the proposed hybrid model significantly outperforms eight mainstream machine learning algorithms,mean absolute error(MAE)and mean squared error(MSE)are reduced by 4.3%to 59.75%and 35.65%to 78.29%respectively.The model’s strong interpretability further underscores its potential for the widespread application in power industry.

关 键 词:光伏发电 支持向量机 平衡迭代规约和聚类 双向长短期记忆网络 功率预测 

分 类 号:TM615[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象