检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王桐[1,2] 杨光新 欧阳敏 WANG Tong;YANG Guangxin;OUYANG Min(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Advanced Ship Communication and Information Technology,Harbin Engineering University,Harbin 150001,China)
机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001 [2]哈尔滨工程大学先进船舶通信与信息技术重点实验室,黑龙江哈尔滨150001
出 处:《哈尔滨工程大学学报》2024年第9期1810-1817,共8页Journal of Harbin Engineering University
基 金:中央大学基础研究基金项目(KY10800220073);国家科技重点实验室基金项目(6142209190107);先进船舶通信和信息技术产业和信息技术部重点实验室项目(AMCIT2101-08).
摘 要:为了解决道路车流量的数据生成条件时变场景下的交通预测问题,本文建立道路交通控制与交通流预测数据之间的联系,提出一种基于多种残差补偿的贝叶斯网络的短期交通预测方法。提取城市中大规模多路口主干道车道及车辆信息构造多个平行的贝叶斯网络,使用贝叶斯关系及期望最大化算法进行短期交通预测。再通过数据自相关残差补偿、车辆换道和多路口连通性的线性残差补偿提高了预测的精度,解决了传统研究对相邻路口和换道导致的误差等因素处理能力不足的问题。仿真结果表明:使用贝叶斯网络预测交通流,并基于车辆行为的残差进行精度补偿,可以更准确地预测复杂的交通演化场景的短期交通流。The change in time-varying factors in traffic evolution has a great impact on the data generation condi-tions of road traffic flow.To determine the influence of these factors,this paper establishes the relationship between road traffic control and traffic flow prediction data and proposes a short-term traffic prediction method based on the Bayesian network(BN)with multiple residual compensations.The lane and vehicle information of large-scale multi-intersection trunk roads in the city are extracted to construct multiple parallel BNs,and the Bayesian relation-ship and expectation maximization(EM)algorithm are used for short-term traffic prediction.Then,the prediction accuracy is improved through data autocorrelation residual compensation,vehicle lane changes,and linear residual compensation of multi-intersection connectivity,which solves the problem of insufficient processing ability of tradi-tional research on factors such as errors caused by adjacent intersections and lane change.The simulation results show that the short-term traffic flow in complex traffic evolution scenarios can be predicted more accurately using BN,compensating for the accuracy based on residual vehicle behavior.
关 键 词:大规模 交通预测 贝叶斯网络 混合高斯模型 EM算法 残差补偿 自回归滑动模型 LSTM网络 线性过程
分 类 号:U491.1[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.231.86