检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡正阳 王勇[1] HU Zhengyang;WANG Yong(Jiangsu Automation Research Institute,Lianyungang 222061,China)
出 处:《指挥控制与仿真》2024年第5期37-44,共8页Command Control & Simulation
摘 要:针对不同会遇态势下的船舶自主航行避碰决策问题,在DDPG(Deep Deterministic Policy Gradient)算法基础上,以国际航行规则(COLREGS)为基准设计相应的奖励函数,通过引入势能回报塑形的思想来引导智能体学习最佳策略,保障了智能体在遵守规则的前提下能够有效避障到达航行目标点。最后,作者对双船和多船分别在不同会遇场景下避障问题进行了仿真验证,并与TD3算法进行比较。结果表明:作者设计的算法收敛快,训练效果平稳;生成的模型能在遵守COLREGS的情况下有效避障,并且在两船会遇情况下比TD3算法所规划的路径更短,效率更高。This research addresses the crucial problem of collision avoidance decision making for autonomous ships under diverse encounter situations.Building upon the Deep Deterministic Policy Gradient(DDPG)algorithm,appropriate reward functions based on the International Regulations for Preventing Collisions at Sea(COLREGS)have been designed to effectively guide intelligent agents in acquiring optimal strategies.By incorporating the concept of potential reward shaping,the proposed approach ensures efficient obstacle avoidance while adhering strictly to the established rules.Moreover,extensive simulations have been conducted to validate the algorithm s performance in collision avoidance for both dual-ship and multi-ship scenarios under varying encounter situations,and a comparative analysis with the TD3 algorithm has been undertaken.The obtained results demonstrate that the proposed algorithm exhibits rapid convergence and stable training performance.The resulting models successfully achieve collision-free navigation while strictly adhering to the COLREGS.Particularly,in two-ship encounter situations,the proposed algorithm outperforms the trajectory planned by the TD3 algorithm in terms of shorter path length and higher efficiency.
关 键 词:无人船舶 自主航行避碰 深度强化学习 COLREGS
分 类 号:E919[军事] U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7