检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:洪天星[1] HONG Tianxing(School of Physics and Mechanical and Electrical Engineering,Longyan University,Longyan 364012,China)
机构地区:[1]龙岩学院物理与机电工程学院,福建龙岩364012
出 处:《成都工业学院学报》2024年第5期35-40,共6页Journal of Chengdu Technological University
摘 要:为提升智能变电站巡检机器人的路径规划的效率,针对传统人工蜂群算法(ABC)的缺点,通过反向学习策略改进初始种群,利用精英反向学习优化算法的时间滞后性,同时借助差分算法的变异思维改进蜜源更新环节,提高算法的深度挖掘性能和全局寻优性能。实验数据表明,改进的ABC算法能够有效降低73.3%的巡检路径规划时间,巡检准确率可达95.2%,该算法可以提高智能变电站巡检机器人路径规划的效率,对提升智能变电站巡检机器人的智能化水平具有积极影响。In order to improve the efficiency of path planning of intelligent substation inspection robots,in view of the shortcomings of the traditional artificial bee colony algorithm(ABC),the reverse learning strategy was adopted to improve the initial population.The time lag of the elite reverse learning optimization algorithm was used,and the honey source updating process was improved by the variation thinking of the difference algorithm,so as to improve the deep mining performance and global optimization performance of the algorithm.Experimental data show that the improved ABC algorithm can effectively reduce the inspection path planning time by 73.3%,and the inspection accuracy can reach 95.2%.This algorithm can improve the efficiency of path planning for intelligent substation inspection robots,and has a positive impact on enhancing the intelligence level of intelligent substation inspection robots.
关 键 词:变电站 巡检机器人 路径规划 改进人工蜂群算法 搜索能力 全局优化
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158